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Abstract

This thesis proposes a methodology for optimally sampling a chemical hazard

area subsequent to a chemical weapons attack. The objective is to identify the max-

imum number of areas that no longer require protective gear for safe operations. We

model the area as an undirected graph and employ network analysis techniques to

provide a methodological framework for identifying an optimal sampling sequence

within a fixed time limit. We propose four models that characterize the secondary

vapor concentrations: i) static and deterministic, ii) static and stochastic, iii) dy-

namic and deterministic, and iv) dynamic and stochastic. Comparisons of the static

cases and their dynamic counterparts demonstrate the impact of temporal evolution

of vapor concentrations on the optimal sampling path. We conclude that the num-

ber of safe areas may be either under- or over-estimated depending on the assumed

nature of the secondary vapors.
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OPTIMAL SAMPLING OF A CHEMICAL

HAZARD AREA

1. Introduction

1.1 Background

The willingness of contemporary terrorist organizations to use asymmetric mea-

sures against their adversaries suggests the need for defending U.S. military installa-

tions and interests against chemical or biological attacks. According to [6], chemical

and biological weapons (CBWs) are considered to be weapons of mass destruction

(WMD) because they are capable of “high order destruction and/or of being used in

such manner as to destroy large numbers of people.” The devastation CBWs may

cause, and the ease with which they may now be developed, stored, and transported

has made protecting against them a primary concern for military installations. In the

event of an attack on any United States military installation or interest, a method

for identifying the most hazardous areas is required to protect human life and to

restore operations to full capability as soon as possible.

The terrorist attacks on the United States on September 11, 2001 have dra-

matically altered the views of the American public and militaries. As noted in [6],

the threats to U.S. targets, military combat personnel, and American military in-

stallations in foreign countries are very credible. However, steps have been taken

to reduce the threat of chemical or biological attacks on groups or nations. The

Chemical Weapons Convention (CWC) in 1997, and Biological Weapons Convention

(BWC) were “adopted to stifle proliferation of chemical and biological weapons.”

However, there are shortcomings with the treaties. They do not focus on the small

quantities that a terrorist group may employ, but on the large developmental pro-

1-1



grams of entire nations. Also, they do not regulate “dual use” items or chemicals

such as Toxic Industrial Chemicals (TICs) that can double as weapons. These in-

clude chemicals such as methyl isocynate which was used in Bhopal, India (Dec 1984)

that are not included in the schedules of chemicals listed in the CWC [6]. Due to

these shortcomings, emergency response and assessment teams must be prepared to

act following an attack.

The Department of Defense Chemical, Biological, Radiological, and Nuclear

Defense Program (CBRNDP) Annual Report to Congress dated May 2004 [5] con-

tains significant literature on the continuing need to defend against weapons of mass

destruction (WMD) today. Among several other topics, the report includes infor-

mation from an unclassified CIA report to Congress concerning the acquisition of

technology that relates to WMD and advanced conventional munitions which states

current threats to the United States and its assets. It also focuses on contamination

avoidance as well as improving the individual protective equipment for the personnel

who may be exposed to contamination.

According to the CBRNDP report, the CIA has provided evidence that several

countries have an active interest in WMD. These countries include Iran, Iraq, North

Korea, Libya, Syria, Sudan, India, and Pakistan and some of the key supplier coun-

tries are reported to be Russia, China, and North Korea. Disturbingly, many of the

33 “designated terrorist organizations” and other non-state actors across the world

have shown interest in CBRN [5]. With all of these countries and organizations ex-

pressing interest in WMD, it is prudent for the U.S. to be concerned with defending

against these weapons and to develop strategic policies that can be implemented in

the event of such an attack to protect human life and to restore hazardous areas to

full operational capabilities as quickly as possible.

Subsequent to a successful chemical attack on any fixed operational site, miliary

or otherwise, vapor contamination can hinder operations for possibly a significant

amount of time. The contamination results from persistent chemical agents that
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deposit on various surfaces and then evaporate into the air, creating a hazardous

vapor cloud. Atmospheric conditions may then cause this cloud to travel to parts of

the site that may not have been directly hit and cause contamination, threatening the

health of personnel in the area as well as their productivity. Decision makers must

determine the level of mission-oriented protective posture (MOPP) for personnel in

various work areas. The protective gear donned by personnel in (potentially) infected

areas can be cumbersome and cause heat stress; therefore, commanders must take

into account the specific threat, environmental conditions that affect the evaporation

rates, work rates, the level of task difficulty, and mission requirements when deciding

the appropriate MOPP level at any point in time following a chemical attack.

It is imperative to identify the areas of the site which can safely return to full

operational capabilities as soon as possible. Knowing which areas of the site crews

should sample first in order to identify where gear is (or is not) required is essential

to restoring the site to full capabilities. At each sampled area, instrument readings

must be obtained so that secondary vapor concentrations may be assessed.

Developing a strategy for prioritizing the areas to be searched that identifies

the maximum number of areas in their optimal level of safety is the focus of this

thesis. That is, by carefully choosing which areas to search to obtain actual vapor

readings, a maximum number of areas can be reached within an allotted time while

only searching those that are “critical.” Critical areas are identified as those where

the vapor concentration level has decreased below a fixed threshold that dictates the

need for protective gear.

The basic problem can be viewed as a set covering problem. There exists a set

of areas that need to be reached from some starting location while minimizing (or

maximizing) some quantity. In this case, we seek to cover the maximum number of

areas where protective gear is not required. This problem increases in complexity

due to the addition of constraints, specifically a time constraint, forcing a feasible

solution to the real world problem to satisfy these time restrictions. For example,
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the solution must be a path through the site that does not allow subtours (disjoint

paths) where the crew cannot move from one path to another.

The approach used in this thesis has not been previously applied to a problem

considering the identification of secondary vapor contamination to an operational

site subsequent to a chemical weapon attack. We model this problem as a network

and employ operations research techniques to solve it. This approach also addresses

the spatial and temporal dynamics of the real problem by incorporating them into

the model. Though extensive research has been ongoing for defending against a

chemical weapons attack, we focus our attention on obtaining a policy for the full

restoration of operational capabilities as soon as possible should a chemical attack

occur.

1.2 Problem Definition and Methodology

This thesis is primarily concerned with the development of a methodology for

incorporating available vapor level data to “intelligently” assess the actual threat to

personnel in areas throughout a fixed military installation. Thus, the problem of

optimally sampling a chemical hazard area is our focus.

The dynamics of the problem may be described as follows. Following a chemical

attack, detectors such as M-8 or M-9 paper are available for reading. They contribute

a “yes” or “no” response as to whether or not a liquid drop of chemical has touched

the paper. As the liquid begins to evaporate and enter the atmosphere, the wind

carries it downstream and begins to disperse the hazardous vapors to other areas.

Additionally, as time progresses, the concentration of the vapors begins to diminish

and some areas may become safer. It is important to know when the areas begin

to return to normal so that personnel may return to normal operations. Thus,

methods for searching the site, with the objective of identifying the areas with a

vapor concentration below a specific threshold, are considered.
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This problem displays characteristics of several well-known problems. Part of

the objective is the same as for the Travelling Salesperson Problem (TSP), where we

seek to minimize the time to reach all cities on a tour. However, for this problem,

the “salesperson” has a fixed amount of time to reach all of his or her destinations.

Thus, it is possible that not all “cities” will be reached. Also we seek to maximize

the reward for visiting “cities” and the “salesperson” does not have to return to the

starting location.

Another well-known network problem similar to the one addressed here is the

shortest path problem (SPP). The entity in the shortest path problem must find the

path of minimum length (or time) from a starting location (source) to a specified

destination (sink). Our problem strays from the SPP because we do not have a

distinct sink node and we impose an upper bound on the length (time) of any path

in our problem. It also varies from the SPP because we seek to sample as many areas

as possible rather than simply finding a path of shortest length. There is a reward

associated with reaching a node in our problem which is not necessarily included in

the standard SPP.

This problem can also be viewed as a knapsack problem where a fixed amount

of resource is available for use in maximizing the objective. In our problem, the

resource is time, and we seek to maximize the reward. Contrary to the knapsack

problem, the order in which the items are placed in the “knapsack” is important.

Since we seek to reach all the nodes, if possible, this problem shares a similarity

with the minimum spanning tree problem. However, in the minimum spanning tree,

each node must be connected but they may not form a connected path through

the network. We seek a path that can be followed from beginning to end without

reaching a dead end or becoming stuck in a cycle.

It is clear the problem of this thesis shares characteristics with several well-

known optimization problems. However, new methodologies must be developed to
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solve this particular problem. The proposed methodology incorporates aspects of

each of those problems, but will be distinct from them in its formulation.

Our main contribution to the operations research literature is an optimal sam-

pling procedure for a single crew to assess the current threat level at a fixed opera-

tional site in order to reduce MOPP levels as quickly as possible. We consider four

distinct cases of this problem. First, we consider the case where vapor concentra-

tion levels are static and deterministic. Next, we assume the vapor concentrations

evolve temporally, but remain deterministic. Third, we consider stationary proba-

bility distributions for the vapor concentrations and finally, we consider the case in

which vapor concentrations evolve according to a time-variant probability distribu-

tion in each area. The methodologies as stated are progressively more complex. The

ultimate solution is a time-adaptive policy directing the search crew through the

site to maximize the number of areas identified to have vapor concentrations below

the threshold. Thus, the maximum number of areas have fully restored operational

capabilities.

1.3 Thesis Outline

Chapter 2 examines current literature in the areas of the ongoing threat of

biological and chemical weapons to U.S. installations, domestic and foreign, as well

as U.S. interests, and steps taken to defend against such an attack. Methodologies

for formulating and solving problems, such as the one in this thesis, are also ex-

amined and discussed. In chapter 3, we formally define the problem and provide a

mathematical programming formulation for each of the cases mentioned above. The

first section describes the network model definitions and the second section states

the model assumptions and defines each of the four cases. Chapter 4 presents nu-

merical illustrations for each of the four cases and compares the results of the static

cases with their dynamic counterparts. Finally, Chapter 5 provides some concluding

remarks, recommendations, and directions for extensions and future research.
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2. Relevant Literature

This chapter reviews relevant contributions to the area of emergency response

subsequent to a biological or chemical attack, and a review of literature on network

problems. Specifically, literature regarding stochastic, time-varying networks, time-

adaptive route choice problems, and shortest path problems are reviewed.

2.1 Some Historical Perspectives

The use of biological weapons is not a modern idea. It has existed since 600

B.C. when the Athenians were known to contaminate rivers with skunk cabbage to

incapacitate their enemies with a violent sickness [2]. During the 1300s, Tartarians

utilized corpses infected with the plague by catapulting them over the city walls

of Kaffa, possibly beginning the Black Death [19] and in America, blankets con-

taminated with smallpox were distributed to some Native American tribes in the

1700s [19]. Most recently, the 2001 introduction of Anthrax into the United States

Postal Service reminded the American government and domestic population just how

serious biological weapons are [20] and that they are a contemporary threat.

The first known manufactured chemical weapons date back to 1823 when mus-

tard gas (levinstein mustard) was first synthesized. The first use of a chemical

weapon dates back to 1914 when mustard gas was used during World War I by Ger-

man forces [10]. More recently, the 1995 attack on a Tokyo subway by a Japanese

cult employed sarin nerve gas killing twelve people and injuring thousands [3]. More

notably, in March 1998, the Iraqi government used a “cocktail” of at least four chemi-

cal weapons (mustard gas, sarin, tabun, and VX) on Halabja, killing more than 5,000

individuals [7].

It is evident that, throughout history, both chemical and biological weapons

have wreaked havoc on nations and communities. Currently, concerns about chem-

ical weapons development and use are elevating for governments worldwide due to

2-1



scientific and technological advancements and the ease with which they can be ob-

tained by adversaries and terrorists [6]. Today, they can be manufactured in the

same factories that industrial or agricultural chemicals are made. Contemporary

chemical weapons are easy to store as a liquid, which can be dispersed in vapor form

(type of gas), or as an aerosol, (suspension of tiny liquid or solid particles in a gas)

[15]. Chemical and biological weapons can be created using minimal technology;

thus making them available to any terrorist group, country, or state who desires

them. Advanced nations can produce more elaborate weapons with the use of chem-

ical engineering, pharmaceutical, or biotechnology industries. More importantly, the

globalization of these industries, scientific engineering, and technical personnel ex-

changes, have made sharing information much easier leading to even easier access to

chemical and biological technology [6].

Contemporary terrorist groups are willing to use asymmetric measures to

accomplish their goals, and therefore, threaten the use of chemical or biological

weapons. Due to the absence of dominating global powers other than the United

States, the threat is very real and alarming. Thus, chemical and biological defense

has received much attention, especially the development of chemical sensors and

instruments for detecting and quantifying chemical vapors. Other areas of focus

include the development of emergency response strategies for affected regions and

individuals, and restoration of a site subsequent to a chemical or biological attack.

2.2 Current and Developing Research Areas

The Department of Defense Chemical, Biological, Radiological, and Nuclear

Defense Program (CBRNDP) Annual Report to Congress from May 2004 [5] stresses

contamination avoidance including reconnaissance, detection, and identification. If

a chemical agent release is unavoidable, these three areas are key to ensuring forces

in the affected area assume the optimal level of mission oriented protective posture

(MOPP) to sustain operations and restore military installations to full operational
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capabilities as soon as possible. Currently, advanced technologies are being developed

for chemical and biological standoff detection, early warning detection, miniaturiza-

tion, and interconnectivity. There are other areas also receiving attention such as

enhancements in detection sensitivity, interference rejection, logistics supportability,

and affordability [5].

The CBRNDP report [5] states that contamination avoidance seeks “to provide

a real-time capability to detect, identify, characterize, quantify, locate, and warn

against all known or validated CBRN warfare agent hazards.” The optimization

of sensor technologies is being researched to meet near-term goals. Mid-term goals

focus on developing improved tactical detection and identification capabilities for

both chemical and biological warfare agents. The focus of far-term efforts is on

multi-agent sensors for CBRN agent detection and remote/early warning CBRN

detection. According to the CBRNDP Annual Report to Congress (2004), the goal of

contamination avoidance is “direct integration of CBRN detectors as a single system

into various platforms linked into command, control, communication, computer, and

intelligence (C4I) networks.” Improvements in these technologies will ultimately lead

to better detection of chemical agents and secondary vapors contaminating sites,

making it easier to identify areas of the site that are operating in their optimal level

of MOPP.

Focus in the area of contamination avoidance has several potential payoffs.

CBRN detection systems to be developed will “provide the capability to detect,

identify in real time, map, quantify, and track all known CBRN contamination in

a theater or operations.” Acquiring these capabilities will enable commanders of

a targeted site to avoid contamination, determine the need for (and verification

of) effective reconstitution procedures, as well as assume optimal protection that

will enable sustainment of the mission and continuance of fighting with minimal

performance degradation and casualties. An important payoff of the technologies

being developed is in the dual use potential. Occupational Environment Health
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Surveillance can use the developed technologies to monitor air pollution, noxious

fumes inside enclosed areas, and municipal water supplies.

There exist several major technical challenges for advancing contamination

avoidance science and technology. These include biological collection, detection and

identification, improved agent discrimination and quantification, sample processing,

interferent (i.e., false positive and negative alarms), and ambient biological back-

ground rejection. Also, it is challenging to reduce size, weight, and the power re-

quirement for detectors, as well as power generation and consumption, development

of integrated biological and chemical detection systems, and fusing sensor data with

mapping, imagery, and other data for the near real-time display of events. The

discrimination capability of standoff detection for biological materials have been im-

proved in the two years prior to the publication of the 2004 CBRNDP annual report

[5]. Clearly, the government recognizes the potential hostile use of biological or

chemical WMDs on the domestic United States and/or foreign interests. However,

the main focus of the research has been on avoiding CBRN hazards through the

development of early detection devices and a warning system. The problem of this

thesis focuses on procedures to be employed in the event of an attack that could not

be avoided.

Should an attack occur on a military installation or other interest, it is im-

portant to have an effective response policy available. To do this, the nature of the

weapons released over the site must be understood and the behavior of the released

agent (e.g., biological or chemical) must be studied. Thus, an important aspect

of studying chemical weapons attacks is understanding the spatial and temporal

evolution of the chemical release. Several papers have been written regarding emer-

gency response subsequent to a biological or chemical attack [20], forecast models

[17], source release models [13], receptor models, and other topics concerning the

behavior of pollution or a released chemical [9].
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Extensive research has been conducted on anthrax attacks, specifically with

regard to emergency response in populated areas. Wein, Craft, and Kaplan [20]

compared various emergency responses to such an attack. They develop a math-

ematical model consisting of an atmospheric dispersion model, an age-dependent

dose-response model, a disease progression model, and a set of spatially distributed

two-stage queueing systems consisting of antibiotic distribution and hospital care.

The paper covers the response to a biological weapon attack, specifically anthrax,

but not a methodology for identifying areas that may become contaminated. They

agree that a Gaussian plume model may be “too simplistic to monitor and predict

the spatiotemporal anthrax concentrations” following an attack but they use the

“downstream” portion with a more sophisticated atmospheric model to capture “at-

mospheric complexities” that are previously ignored. Thus, they model the evolution

of anthrax through space and time but do not provide a methodology for searching

an area to identify where people are vulnerable to inhaling potentially deadly spores.

Craft, Wein, and Wilkins [4] understand deterrence is not a reliable strategy for

defense against terrorists, but the best security against an attack is in consequence

management. That is, how the number of deaths can be minimized after an attack

has occurred. Again, the focus is on treating individuals who suffer from anthrax

inhalation and not on identifying a policy for searching the area to find where atmo-

spheric conditions have spread the contamination and where time (or atmospheric

condition) has reduced the risk of contamination to other areas.

Similar works have been published for the case of smallpox. Kaplan, Craft,

and Wein [11] estimate the number of smallpox cases and deaths resulting from an

attack in a large urban area. Specifically, they show that mass vaccinations following

an attack result in “far fewer deaths and much faster epidemic eradication” than the

interim policy of isolating symptomatic cases and performing traced vaccinations

with mass vaccinations as a secondary plan if the first is infeasible. Kaplan, Craft,

and Wein [12] also evaluate existing and alternative proposals for the emergency
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response to a smallpox attack. Like the previously discussed papers, methodology

for identifying contaminated areas and areas that are free of contamination is not

considered.

Developing an optimal sampling procedure subsequent to a chemical agent

release over a fixed operational site, is contingent upon reliable spatiotemporal con-

centration data. Research in fields such as weather forecasting, receptor models,

atmospheric pollution, vapor dispersion, and other such areas is necessary for de-

vising ways to obtain this information. According to Sofiev [17], a “demanding”

application of short-term weather forecasting is the real-time emergency modelling

of nuclear and chemical hazardous events. The paper presents an operational sys-

tem developed to create a short-term forecast of potential risk areas, specifically in

the event of a nuclear power plant accident. The framework developed in the work

displays the capability of addressing inverse problems of working with an unknown

source of release. This contribution is highly significant because the source of a

chemical agent release is not likely to be known.

Researchers have published substantial works on estimating the source release-

rate of atmospheric pollution [14]. Subsequent to a gas release, forecasting the

concentration of the gas in the atmosphere depends on the rate and the location of

the release. Thus, four distinct cases for a single point source of a released gas have

been considered:

1. Instantaneous release from a known location,

2. Instantaneous release from an unknown location,

3. Extended release over a period of time from a known location, and

4. Extended release over a period of time from an unknown location.

According to Kathirgamanathan et al. [14], the first case is simple due to

just a single parameter requiring estimation. The authors published a previous

work [13] for the second case in which they present an inverse model to estimate
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the parameters for the model simultaneously. Case three is the focus of [14] where

the authors develop an inverse model using methods from groundwater modelling

literature and identify factors that affect the accuracy of inverse model prediction.

The authors state they will address case four in future papers.

A result of the work for case two in [13], yields the advection-diffusion equation

for determining vapor concentration at specific points that we refer to in Chapter 3.

This equation is an example of an expression used for determining the chemical

concentration at specified points some distance from the point of release at specified

times. It is important to note that in the event of a chemical attack, it is unlikely

that the amount of chemical release, or the exact location of the release, will ever be

known. Thus, even a formal mathematical model for determining the concentrations

at points around the attack will have only limited value in discerning the actual

concentration at those areas unless a reading is obtained through sensors or some

other instrument.

Once methods for obtaining all data are developed, methods for determining

optimal sampling procedures must be developed to incorporate real-time information

into the methodology. In this thesis, we seek to identify an optimal sampling strategy

for searching an area subsequent to a chemical attack. We model the real problem as

a network and apply network analysis techniques to determine the optimal solution.

Because network models are so critical to our approach to this problem, a review of

rudimentary concepts is provided next.

2.3 Network Modelling and Analysis

Ahuja’s text [1] provides a foundation for modelling various problems as net-

work flow problems and developing algorithms to solve the models. This text pro-

vides the background that is necessary for understanding the models provided in

Chapter 3 for determining an optimal sampling strategy.
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A specific type of network flow problem important to this thesis is the shortest

path problem. According to Ahuja [1], this problem is “perhaps the simplest of all

network flow problems.” However, that does not diminish the importance of the

shortest path problem for our purposes. The objective of the basic problem is to

find a path of minimum cost or length from a source node to a sink node where

each has an associated cost or length. We seek to identify the shortest time path

while simultaneously maximizing a reward (i.e., the number of areas safely operating

without protective gear).

The notation of Ahuja [1] refers to a directed network G = (N ,A) where N

is the set of nodes and A is the set of arcs connecting those nodes. There is an

arc length or cost, ci,j associated with each (i, j) ∈ A. The source node s is where

the flow (e.g., vehicle, computer data packet, etc.) originates and the sink node t

is where the flow terminates. The term A(i) is used to define the arc adjacency list

of node i. That is the list of all arcs outgoing from node i into other nodes. The

“length of a directed path” is defined to be the sum of the lengths of arcs in the

path. It is assumed the network contains a directed path from the source to all other

nodes in the network, otherwise, there would exist isolated nodes that could never be

reached. Though there are several types of directed shortest path problems, finding

the shortest path from each node to every other node is the type that is relevant to

this problem. It is referred to as the “all-pairs shortest path problem.”

A simple string model is used to aid in the understanding of a shortest path

problem between a specified pair of nodes s and t. Ahuja [1] points out that this

model can easily be extended to the shortest path problem with multiple destinations

and nonnegative arc lengths. Assuming the string cannot be stretched, use the knots

to represent nodes, where ci,j is the length of string joining the two knots i and j.

Taking hold of the knot s in one hand and the knot t in the other and pulling the

hands apart leaves one or more paths held tight. These represent the shortest paths
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from node s to t since they are the lengths that are restricting the source and sink

knot from being pulled farther apart.

Several important aspects of the shortest path problem can be taken from this

string model [1]. The taut strings represent arcs on the shortest path and thus, the

distance between any two successive nodes i and j on that path equal ci,j of the

arc (i, j) between the nodes. Considering any two nodes i and j, that may not be

successive, that are connected by arc (i, j) in A, the shortest path distance from the

source s plus ci,j is always as large as the shortest path distance from the source to

node j. This composite distance may be larger because the string between knots i

and j may not be taut (i.e. not in the shortest path).

According to Ahuja [1], there are two groups of algorithmic approaches to

solving shortest path problems, both of which are iterative: label setting and label

correcting. Each of these approaches assigns tentative distance labels to nodes at

each step. These distance labels are estimates of the shortest path distances. In

other words, they are upper bounds on the distances. The types of algorithms differ

in their methods of updating distance labels from one step to the next and the

class of problems they solve. Label setting algorithms work by designating one label

as permanent (optimal) at each iteration and are applicable only to shortest path

problems defined on acyclic networks. The more general label correcting algorithms

consider all labels as temporary until they are made permanent at the final step.

They are applied to all classes of problems but are less efficient than the label setting

algorithm [1].

Integer programming (IP) is used to solve optimization problems where the

variables are discrete or are restricted to integer values. Specifically, IP can be used

to solve shortest path problems [21]. The basic formulation has an objective function

that seeks to maximize or minimize some profit or cost. For example, consider the

linear program max{cx : Ax ≤ b, x ≥ 0} where A is an m by n matrix, c an n-

dimensional row vector, b an m-dimensional column vector, and x an n-dimensional
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column vector of variables or unknowns. This becomes an integer program by adding

the restriction that certain variables must be integers [21]. There are three different

forms of integer programming. A mixed integer program (MIP) is one where some

of the variables must be integer and others are not. When all of the variables are

integer, it is an integer program (IP) and when all of the variables are restricted to

values of 0 or 1, it is referred to as a binary integer program (BIP) [21].

The Travelling Salesperson Problem (TSP) is a common binary integer pro-

gram in operations research and is very relevant to the models presented in this

thesis. The original TSP is used to model and solve a problem where a single sales-

person must visit n cities exactly once and return to his/her original location. There

is a time (distance) ci,j associated with travelling from city i to city j. The objective

of the TSP is to minimize travel time (distance) by identifying the optimal order in

which the salesperson should visit each city and return to his/her starting point [21].

The TSP is directly related to this thesis problem where the salesperson represents

a search crew, the cities represent the areas of interest, and the time corresponds to

the time required to travel between the areas. However, several modifications must

be made to accommodate the restrictions in this thesis problem and these will be

discussed in the following chapter.

The binary knapsack problem is another well-known problem related to this

thesis. Essentially, one has a “knapsack” and must fill it with some number of items.

Each item has a cost (e.g., size) associated with it, and thus, using an item takes

up some of the resource (e.g., space). The objective is to maximize the benefit of

what goes in the knapsack while adhering to the resource constraint. The knapsack

problem relates to the optimal sampling problem because we seek to maximize the

reward of the search by choosing arcs (with associated times) without exceeding the

available resource (time). However, the order in which the arcs are chosen matters

to this problem since they must form a feasible path through the system.
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Several algorithms have been developed for finding the least expected travel

time path through a network. However, these work only for networks with deter-

ministic time-dependent (or time-variant) travel times and for networks with random

non-time dependent (or time-invariant) travel times [8]. Some fairly recent papers

have studied networks with stochastic and time-variant (STV) travel times [16].

Miller-Hooks and Mahmassani [16] state that STV networks provide “a more appro-

priate representation” for use in making critical routing decisions than deterministic,

static models.

Miller-Hooks and Mahmassani [16] present a methodology for determining

paths with the least expected time (LET) through the network. The resulting set

of paths are Pareto-optimal (or efficient). The results are Pareto-optimal since no

other solution would be optimal to all objectives in this multi-objective problem.

The method for determining LET paths for STV networks differs from the method

for determining LET paths in networks with time-invariant travel times and is more

difficult. For networks with random, time-invariant travel times, each random arc

weight can be set to its expected value and solved using deterministic methods.

Thomas and White [18] model an anticipatory route selection problem as a

Markov decision process (MDP). The objective of their problem is to find the “min-

imum expected total cost route from an origin to a destination that anticipates and

then responds to service requests, if they occur, while the vehicle is en route.” Their

problem is important to mobile communication technologies that enable communica-

tion between dispatchers and drivers. Real-time information is used to determine the

best route for a single pickup and delivery vehicle when the likelihood, as a function

of time, that a potential customer will request a pickup, is known. The flexibility

incorporated into the anticipatory routing problem allows dispatchers to contact a

driver, who may be in the process of a pickup and delivery, and inform them of a

new pickup request. The driver can then adjust his or her route to accommodate

this new request. This attribute is important to other problems where the ability to
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receive real-time information allows the entity (e.g., truck, person, crew) to adapt

its route to accommodate the new information, thus optimizing the route [18].

The anticipatory routing problem which Thomas and White [18] consider in-

volves a single, uncapacitated vehicle travelling along feasible arcs from a known

origin to a known destination in a fixed amount of time. As a vehicle traverses an

arc, it accrues a travel cost dependent on the arc (e.g., time, money, resource) and

accrues a reward after visiting a node requiring a pickup. Clearly, if no pickup is

requested, no reward is accrued. It is assumed each customer has a known distri-

bution giving the probability that the customer will request a pickup at time t or

before, for all t. Thomas and White [18] formulate the model of the road network as

a MDP. The graph consists of a set of nodes and edges. An arc exists if and only if

there is a road permitting travel between the two endpoints of the arc. They define

a successor set containing the adjacent nodes for each node which includes the node

itself (i.e., the driver can wait at a node). There is an origin and destination node

in the set of nodes but they are not in the set representing customers who may or

may not request service (i.e., requests cannot be made from the origin or destination

node).

Decision epochs for the MDP occur when the vehicle arrives at a node and this

is a finite horizon problem with the positive integer T indicating that action selection

terminates no later than T − 1. A random variable Q represents the total number

of decisions and kl(t) represents the state of customer l’s current service request.

The successor set is also the action set whose cardinality is necessarily finite. They

also define decision rules at a time t as a function that selects an available action

and a policy as a sequence of those decision rules and determine the structured cost

function and policy structure results. The work is important to this thesis because

it incorporates real-time information when making decisions by anticipating possible

requests. The ability to incorporate real-time or near real-time information into

decisions allows for optimal policies being developed when the problem is dynamic.
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The main contribution of this thesis is an optimal sampling procedure for a

single crew to assess the contamination level at various areas throughout a fixed

operational site subsequent to a chemical attack. The objective is to identify the

maximum number of areas that can safely operate without protective gear and to

complete the search within an allotted time limit. We consider four cases, increasing

in complexity, and formulate each one as a binary integer program to develop a

methodology for optimally sampling the site in each case. First, we consider static

and deterministic vapor concentrations and then we modify the problem to allow the

vapor concentrations to behave according to a stationary probability distribution.

Next, we incorporate temporal evolution into the deterministic model and develop

an algorithm for identifying the optimal sampling procedure. Finally, we consider

vapor concentrations that evolve according to a time-variant probability distribution

and develop an algorithm that identifies the optimal sampling procedure based on

the probability of obtaining a reward at a searched area. The final solution is a time-

adaptive policy directing the search crew through the site to the maximum number

of areas identified to have vapor concentrations below the threshold. Thus, the

maximum number of areas in which personnel can safely operate without protective

gear are identified.
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3. Formal Mathematical Model

In this chapter, we present a mathematical model for optimally searching an

operational site subsequent to a chemical attack. We consider three distinct cases

before examining the fourth (and most realistic) case, ultimately developing a policy

for searching the site, within an allotted amount of time, to find the maximum

number of areas in which the level of protective gear can be safely reduced.

3.1 Model Description

Assume that a fixed site (e.g., a military installation) is situated on a Cartesian

plane such that ordered pairs (x, y) may be used to identify and label critical locations

such as the flight line, headquarters, and other operationally imperative areas. In

Figure 3.1, such locations are indicated by an asterisk (∗). Orienting the site on

the positive quadrant of the coordinate system with the origin of the chemical agent

release in the southwest corner, each area can be identified by the ordered pair

(x, y), where x and y are the distances, in meters, from the origin in their respective

directions to the point where vapor concentration readings will be obtained.

In this research, we represent the fixed operational site as a network in which

the areas are considered to be the nodes of the network. Nodes are labelled by the

x 

y 

* 

* 

* 

* 

Figure 3.1 Graphical depiction of areas on an installation.
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integers 1, 2, ..., N , where N is the total number of areas. The network’s arcs connect

pairs of nodes to represent feasible travel between those nodes. It is important to

note, that though the arcs are represented as line segments, the actual path between

the areas may not necessarily be straight (or direct). The arcs simply represent

feasible travel paths from one area to another.

Let G = (N ,A), be a directed graph where N is the set of nodes, having

cardinality N (i.e., |N | = N), and A = {(i, j) : i, j ∈ N} is the set of arcs connecting

pairs of vertices i and j. An arc (i, j) is said to be incident to nodes i and j when the

arc directly connects node i and node j [1]. A directed arc connecting nodes i and j

indicates feasible travel between nodes i and j in the direction of the arc. Undirected

arcs have no arrowheads on either end and imply travel is possible in both directions.

That is, one may arrive at node j from node i and likewise, one may arrive at node

i from node j. A leaf is a node with at most one arc incident thus allowing only one

route in and the same route out. Arc weights denote static and deterministic travel

times between two nodes and the cost (or reward) associated with each node is found

from the vapor concentration at that node. The in-degree of a node is the number of

arcs incoming to the node and the out-degree is the number of arcs emanating from

the node. A node j ∈ N is said to be covered if it has been visited.

 

i j 

vi(t) vj(t) ti,j 

tj,i 

Figure 3.2 Graphical depiction of network definitions.

In Figure 3.2, arc (i, j) is incident to nodes i and j. The deterministic duration

ti,j is required to travel from node i to node j. Finally, at time t, the vapor concen-

trations at nodes i and j are vi(t) and vj(t), respectively. If the vapor concentration

level does not depend on time, the notation is simply vi and vj.
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The primary focus of this thesis is the routing of a search crew through a fixed

operational site in order to identify locations in which hazardous secondary vapors

are present subsequent to a chemical weapons attack. In reality, this problem is

both dynamic and stochastic in nature. That is, the vapor concentrations change

over time, either increasing in some areas or decreasing in others. The problem

is stochastic in that the hazardous vapor concentrations are random variables and

are governed by some (time-variant) probability distribution which is assumed to

be known. Due to the stochastic temporal and spatial evolution of the secondary

vapors, it is necessary to obtain actual data through chemical vapor sensors and/or

other such instruments. Technological capability to obtain such data will contribute

to solving the problem by providing accurate, real-time information. However, in

lieu of having such data, we assume known distributions in our model.

Due to the dynamic and stochastic nature of the vapor concentration levels,

crews must intelligently search the site to obtain concentration measurements to

determine the correct level of protection required for safe operations. Thus, they

need to reach as many areas as possible within a fixed time window while ignoring

non-critical areas or areas not likely to be contaminated. In order to approach this

problem, we first consider the following three cases:

1. Static and deterministic vapor concentration levels;

2. Static and stochastic vapor concentration levels;

3. Dynamic and deterministic vapor concentration levels.

Once these three cases are formulated and solved, the fourth, and most realistic case,

of dynamic and stochastic vapor concentrations, can be formulated and solved using

the techniques and insights obtained from the previous three formulations.

In the next section, a number of problem assumptions are presented. Also, we

present the four cases considered and the methodology for solving each one.
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3.2 Model Assumptions and Cases

All four cases employ the following set of assumptions:

1. The weapon released is a chemical agent with known characteristics (e.g., chem-

ical makeup and properties, effect on human life, evaporation rates, lifetime,

etc.).

2. Only one crew is available to obtain instrument readings of vapor concentration

levels.

3. The crew travels (either on foot or in a vehicle) at a constant velocity and

experiences zero delays due to traffic, etc.

4. Travel times between nodes are static and deterministic.

5. Travel times between two nodes are symmetric (i.e., ti,j = tj,i ∀(i, j) ∈ A).

6. Only one reading within each area is required to assess the correct level of

protective gear required.

7. The time required to obtain an instrument reading is constant.

8. There is a fixed vapor concentration threshold v∗ below which protective gear

is not required and above which it is required.

9. Vapor concentrations evolve spatially (i.e., the level of contamination in an

area depends on its distance from the initial release).

The first assumption implies that we focus on chemical weapons, as opposed to

biological weapons. The next two assumptions regarding the search crew simplify the

problem. The methodology we develop is based on a single crew available for the task

that travels, either in a vehicle or on foot, at a constant velocity. Again, to reduce

the number of stochastic elements in the problem, we impose the assumption of a

fixed and deterministic amount of time required for obtaining instrument readings.

This allows the instrument reading time to be added to the travel time. Also, we
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assume symmetric travel times, thus implying travel from node i to node j requires

the same amount of time as travelling from node j to node i. Research suggests a

fixed vapor level exists, above which the vapor concentration is harmful to human

beings and below which they can operate safely. Finally, we recognize the chemical

vapor concentrations change as one moves farther from the source of release. This

assumption attempts to capture the true behavior of chemical vapor concentrations

considered when developing the methodology for each case.

In the following subsections we present the three cases mentioned in section 3.1.

First, we consider the case where the vapor concentration level at each node is static

and deterministic. This is a trivial case where the vapor concentrations can be com-

puted at the initial time of the attack and do not change over time. Second, we

examine the case in which vapor concentrations are static and stochastic. This is

closer to the real world case because the vapor concentrations cannot be known with

certainty until an instrument reading is obtained. The probability distributions for

the vapor concentrations are assumed to not change over time. Third is the case con-

sidering dynamic and deterministic vapor concentrations. Time is incorporated into

the mathematical formula and the vapor concentrations change (deterministically)

as time progresses. Finally, the fourth case considers dynamic and stochastic vapor

concentrations. Representative of the real world situation, the vapor concentration

levels behave according to a time-variant probability distribution. There is a clear

objective for each case and the result is a policy, in some cases time-adaptive, that

directs a search crew through the site with the goal of identifying the maximum

number of areas for which the level of protective gear can be safely reduced.

3.2.1 Static and Deterministic Vapor Concentration Levels

The first case considers a scenario, subsequent to a chemical agent release, in

which the vapor concentrations at each area are static and deterministic quantities.

That is, they do not change over time and can be determined via a mathematical
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formula in which all of the parameters are known. An appropriate formula, such as

those vapor dispersion models [14], can be used to determine the vapor concentra-

tions, vj, at each node. Figure 3.3 provides an example of the network representation

for this case.

2 1 

3 4 

v1 v2 

v3 v4 

t1,2 

t2,4 

t3,4 

t1,3 

t1,4 

t4,3 

t4,2 

t2,1 

t4,1 

t3,2 

t2,3 

t3,1 

Figure 3.3 Network representation for a 4-node site in the
static/deterministic case.

This is a multi-objective case where we seek to identify the shortest time path

from the starting node s to the other nodes contained in the site while maximizing

the number reached. The vapor concentration levels are calculated, at a fixed time

t0, from an equation such as the advection-diffusion Equation (3.2). The following

parameters must be known to employ Equation (3.2) to compute vj, when node j

has coordinates (x, y, 0):

x, y, z ≡ Cartesian coordinate system with the x-axis oriented in the direction of

the mean wind, the y-axis in the horizontal cross-wind direction, and the z-axis

in the upwards vertical direction.

kx, ky, kz ≡ eddy diffusivities for the x, y, and z directions, respectively in m2sec−1

q ≡ the total mass release in kg

h ≡ height above the ground where the instantaneous gas release occurs in m

u ≡ wind velocity in m/sec
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The equation,

vj =
q

8π
3

2 (kxkykz)1/2t
3/2
0

exp

[

−
(x − ut0)

2

4kxt0
−

y2

4kyt0

]

×

(

exp

[

−
(z − h)2

4kzt0

]

+ exp

[

−
(z + h)2

4kzt0

])

, (3.1)

can be simplified to

vj =
q

8π
3

2 (kxkykz)1/2t
3/2
0

exp

[

−
(x − ut0)

2

4kxt0
−

y2

4kyt0

]

×

(

2 exp

[

−
h2

4kzt0

])

, (3.2)

since we assume z = 0 (i.e., the x, y-plane lays on the ground). Thus, from this point

forward, the ordered pair (x, y) is sufficient for denoting the coordinates of a node.

In the static case, t0 denotes the elapsed time since the initial release when

the vapor concentration for each node j ∈ N is calculated and it remains constant.

Employing Equation (3.2) yields the vapor concentration for coordinates (x, y) cor-

responding to the graphical location of each node j ∈ N , with specified parameters

q, u, kx, ky, kz, and h. From these concentrations, we define a reward rj for each node

j. For a fixed vapor concentration threshold, denoted v∗, the reward for each node

is

rj ≡











1, vj < v∗

0, vj ≥ v∗

. (3.3)

The travel times are used to identify the optimal route the search crew must

follow. The ordered set ψ contains the nodes found in the optimal path in the order

in which those nodes should be searched. Following this path allows the crew to

reach as many areas as possible in the minimum amount of time.

The mathematical programming formulation for the problem consists of a

multi-objective function and several constraints. The objective function (3.4) seeks
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to maximize the number of areas sampled where a reward is observed while also

minimizing the time required to search the site. However, a time constraint (3.5)

is imposed, where T is the allotted time for the search and ti,j is the time required

to travel from node i to node j. Due to (3.5), the result may be a path that does

not reach every node in the network. The optimal path identified as the solution

is denoted, ψ. In the mathematical formulation, xi,j is a binary variable assuming

a value of 1 if the search crew travels from node i to node j and 0 if node j is not

reached from node i. The set S ⊂ N is a set of nodes creating a subtour (i.e., a path

not beginning and ending at the source node, s). For networks whose nodes have a

minimum in-degree of 2, the formulation is

max
N

∑

i=1

N
∑

j=1

rjxi,j(opt), min
N

∑

i=1

N
∑

j=1

ti,jxi,j (3.4)

subject to

N
∑

i=1

N
∑

j=1

ti,jxi,j < T (3.5)

N
∑

j=1

xs,j = 1 for s ∈ N (3.6)

N
∑

i=1

xi,j ≤ 1 for j = 1, ..., N ; j 6= i (3.7)

N
∑

j=1

xi,j ≤ 1 for i = 1, ..., N ; i 6= j (3.8)

xi,j + xj,i ≤ 1 for all (i, j) ∈ A (3.9)
∑

i∈S

∑

j∈S

xi,j ≤ |S| − 1 for S ⊂ N , 2 ≤ |S| ≤ N − 1 (3.10)

xi,j =











1, if (i, j) ∈ ψ

0, otherwise

(3.11)

ti,j ≥ 0. (3.12)
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Clearly, Equation (3.6) requires that exactly one arc emanates from the source node s

in the final solution. This ensures the search crew departs from its starting location.

The next two equations, (3.7) and (3.8) restrict the number of incoming and outgoing

arcs to at most 1. These constraints work for the case where the minimum in-degree

of all nodes is 2, because the search crew cannot become stuck at a leaf of the network

when an outgoing arc exists. Since there is no benefit for returning to a previously

searched node when the rewards are static, these constraints hold and Equation (3.9)

is included to prevent the crew from backtracking (i.e., using the same arc twice).

Equation (3.10) eliminates subtours from the solution as illustrated in Figure 3.4

and finally, (3.12) restricts the times to nonnegative numbers.

2 1 

3 4 

Figure 3.4 Network representation of a subtour.

The mathematical formulation bears similarity to the well-known Travelling

Salesperson Problem (TSP). The objective function is to minimize some time (dis-

tance) and there is a subtour elimination constraint. However, due to the knapsack

problem constraint (3.5), where time is the “resource,” it is possible that not all

nodes will be reached, a requirement of the TSP. Also, the crew does not have to

return to the origin as required in the TSP. Hence, TSP solution procedures are not

directly appropriate for solving the problem in this case.

For networks having a node whose minimum in-degree is 1, it is possible for the

crew to become stuck at a leaf unless Equations (3.7), (3.8), and (3.9) are removed

from the formulation. Removing those constraints allows the crew to backtrack

along an arc should it become stuck at a leaf node. Equations (3.7) and (3.8) can
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be replaced with
N

∑

i=1

xi,j ≤ 2 for j = 1, ..., N ; j 6= i

and
N

∑

j=1

xi,j ≤ 2 for j = 1, ..., N ; i 6= j,

respectively. These new constraints allow an arc to be included at most twice,

allowing the crew to continue the search from a leaf node.

We have determined the best way to solve this case is by implicit enumeration.

Beginning with the starting node s, each adjacent arc is examined. If the current

time t plus the next travel time ti,j is greater than the allotted time T , the branch

terminates at node i. Due to this time constraint, an upper bound can be found on

the number of possible arcs in the optimal solution. This upper bound is given by

u.b. =

⌊

T

min(i,j)∈A{ti,j}

⌋

. (3.13)

Determining this upper bound reduces the size of the problem by providing a limit

to the number of arcs in the optimal path. For example, if T = 60 minutes is allotted

for the search, and the minimum travel time for all arcs was 5 minutes, the upper

bound on the number of arcs in the optimal solution is 12. Hence, if there were

more than 12 nodes in the network, not all of them could be reached in the optimal

solution. Also, the size of the problem is further reduced by restricting backtracking

unless necessary and by not allowing the same node to be searched more than once.

We define a branch as an ordered vector of nodes representing a feasible path

with an associated time length, denoted τk. Each branch bk for k = 1, ..., B, where

B is the number of branches, is examined and if the cardinality of the branch equals

the number of nodes in the network, the path of minimum time is chosen. That

is, for all branches such that |bk| = N , the optimal path ψ is the branch b∗k with
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minimal total search time

τ ∗
k = min

k
{τk} (3.14)

If the maximum cardinality of all branches

b ≡ max
k

{|bk|} (3.15)

is less than number of nodes, the branch of maximum cardinality (and shortest time)

is optimal. That is, the optimal path ψ = b∗k is that path for which

τ ∗
k = min

k
{τk : |bk| = b}. (3.16)

Upon completion of the path specified by the optimal path ψ with total time

τ ∗
k , instrument readings are obtained for all nodes in the path (i.e., ∀j ∈ ψ). The

term rj, represents the indicator function, I{vj < v∗}, and is 1 if vj < v∗ and 0

otherwise. That is, if the vapor concentration at node j is, in fact, less than the

predetermined threshold, then the indicator function will assume the value unity.

For all nodes not in the path, j 6∈ ψ, the vapor concentration vj obtained from

Equation (3.2) is used to determine the reward value rj for those nodes. The total

reward r∗ is the sum of all reward values, denoted by

r∗ =
∑

j∈N

rj. (3.17)

Next we consider the case in which the vapor concentrations are assumed to

behave according to a known probability distribution that is time-invariant.

3.2.2 Static and Stochastic Vapor Concentration Levels

The second case considers a scenario in which the vapor concentration at each

node is distributed according to some known (and time-invariant) probability dis-

3-11



tribution with a finite first moment. That is, the vapor concentration level at node

j is not known, but rather the expected value of the vapor concentration at node j

can be computed or estimated. The random variable Vj denotes the random vapor

concentration at node j.

It has been shown by Hall [8] that the least expected travel time path through

time-invariant stochastic networks can be solved using the same methods as those

for time-invariant deterministic networks. Thus, in this static case the problem

can be solved using implicit enumeration. Figure 3.5 is an example of the network

representation of this case.

2 1 

3 4 

E[V1] E[V2] 

E[V3] E[V4] 

t1,2 

t2,4 

t3,4 

t1,3 

t1,4 

t4,3 

t4,2 

t2,1 

t4,1 

t3,2 

t2,3 

t3,1 

Figure 3.5 Network representation of a 4-node site in the
static/stochastic case.

We seek to maximize the reward while minimizing the time required to travel

through the network. This allows the crew to reach as many nodes as possible

in the allotted time. The difference from the previous case is, before the search

begins, vapor concentrations at each node j cannot be determined with an equation

such as Equation (3.1), but the expected value can be computed through a known

(stationary) probability distribution. Thus, using the expected vapor concentration,

3-12



the reward value for each node is determined by

rj =











1, E[Vj] < v∗

0, E[Vj] ≥ v∗

. (3.18)

Here, expected vapor concentrations are considered rather than deterministic values

and actual vapor concentrations cannot be known until instrument readings are

obtained.

Unlike the case in section 3.2.1, the initial rj values are based on the expected

vapor concentrations. Therefore, a realization of the vapor concentration as a result

of the crew’s search may reveal more areas below the threshold, or more areas above

the threshold, than initially expected. Essentially, the true rj values cannot be

assigned to an area until the crew obtains the instrument reading for that area. Thus,

the importance of searching as many areas in the allotted time is more notable for

this case where the actual total reward can only be known following an instrument

reading of every site. At time T , the end of the time allotted for the search, the

decision makers will know the total reward r∗ such that

r∗ =
∑

j∈N

rj.

In the next section we consider the case where the vapor concentrations are

deterministic, but dynamic. We present an algorithm for determining the optimal

policy that will maximize the reward while completing within the allotted time.

3.2.3 Dynamic and Deterministic Vapor Concentration Levels

The third case is distinct from the first two cases in that we now assume the

vapor concentrations depend on time. The vapor concentration for each node can

presumably be computed from known physical relationships but the values depend
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on the time of the calculation. This is more representative of the real world case

since chemical vapor concentrations do change over time (and space). Figure 3.6

provides an example of the network representation for this case.

2 1 

3 4 

v1(t) v2(t) 

v3(t) v4(t) 

t1,2 

t2,4 

t3,4 

t1,3 

t1,4 

t4,3 

t4,2 

t2,1 

t4,1 

t3,2 

t2,3 

t3,1 

Figure 3.6 Network representation of a 4-node site in the dy-
namic/deterministic case.

As before, let vj(t) denote the vapor concentration at node j at time t. The

advection-diffusion Equation (3.2) is an example of how one might calculate vj(t)

where node j is located at coordinate (x, y). In this case, we allow t to vary, allowing

the vapor concentration for each node j ∈ N to be updated at various times. Recall

the equation

vj(t) =
q

8π
3

2 (kxkykz)1/2t3/2
exp

[

−
(x − ut)2

4kxt
−

y2

4kyt

]

×

(

2 exp

[

−
h2

4kzt

])

, (3.19)

where t is updated to represent the time the crew will arrive at the next node j (i.e.,

t = t + ti,j when the current location is at node i). Using this equation, the search

crew can calculate the vapor concentrations for all areas adjacent to their current

location at the time of their arrival to that subsequent area.

Again, the decision maker’s desire is to return the site to full operational capa-

bilities as soon as possible. Thus, they need to know where and when the protective
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gear requirement can be withdrawn and where and when it needs to be implemented.

Therefore, we develop an algorithm that seeks to maximize the number of areas

searched in which the protective gear is no longer required (i.e., where the reward

value is 1).

The algorithm begins with an initialization step that commences at t0, the time

duration from when the chemical agent was released over the site to the completion

of the first instrument reading. The crew uses an appropriate instrument for reading

vapor concentrations to determine the concentration for the origin node s. Thus,

the reward for node s is

rs(t0) =











1, vj(t0) < v∗

0, vj(t0) ≥ v∗

. (3.20)

The algorithm then considers all areas adjacent to area s. Vapor concentrations are

calculated for those areas using Equation (3.19) and the time it would be when the

crew arrives there (i.e. the current time, t0, plus the travel time from s to j, t0+ts,j).

If an area has a future vapor concentration level below the threshold, it is a

candidate for reduction. Each such area is then considered individually and the one

with the minimum difference from the threshold is chosen (i.e., the node such that

vj(t) is closest to v∗). We choose the area with the minimum difference below the

threshold because it is the most critical area. That is, it is one that most demands an

instrument reading since it is closest to being considered contaminated to a degree

that is unsafe for personnel working in the area without protective gear. If there are

no areas below the threshold, the node within the shortest amount of time (distance)

is chosen. This is because the crew must leave its current location and if no adjacent

node has a positive reward, choosing the closest node will advance the crew in a

minimum amount of time so more nodes can be considered.
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This method is repeated for all adjacent areas and the time t is updated ap-

propriately until the allotted search time has expired. Previously searched nodes

can be revisited if the vapor concentration at a later time is found to be below the

threshold. As measurements are taken in each area, the value of rj is assigned. When

the search time expires, decision makers will know the exact number and location

of areas operating safely without protective gear and those still requiring the gear

for safe operations. The formal algorithm for solving the mathematical program is

provided in what follows. The set N denotes the set of N nodes in the area to be

searched and Ni is the set of nodes adjacent to node i ∈ N . The set R is used to

record nodes in the path with a reward value of 1 and the set ψ is the ordered set of

nodes in the optimal path.

Initialization:

N = {1, 2, ..., N};

Ni = {j : (i, j) ∈ A};

R = ∅;

ψ = ∅;

t ← t0;

i = 1;

Calculate current vapor level at node i, vi(t)

If vi(t) < v∗

ri(t) ← 1;

R = {i};

ψ ← ψ ∪ {i};

Else

ri(t) ← 0;
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ψ ← ψ ∪ {i};

End

Step 1

Calculate vj(t + ti,j) ∀j ∈ Ni

If vj(t + ti,j) < v∗

rj(t + ti,j) ← 1;

Else

rj(t + ti,j) ← 0;

End

Step 2

For each j ∈ N such that rj = 1

Choose j such that vj(t + ti,j) = arg minj∈Ni
{v∗ − vj(t + ti,j)}

R ← R∪ {j};

ψ ← ψ ∪ {j};

End

if rj(t + ti,j) = 0 ∀ j ∈ Ni

Choose j such that ti,j = minj{ti,j}∀j ∈ Ni

ψ ← ψ ∪ {j};

End

t ← t + ti,j;

Step 3

If t ≥ T

STOP

Else
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i ← j;

Return to Step 1

End

This algorithm has been coded in the standard mathematical computing en-

vironment MATLABr to determine a policy for searching the site when the vapor

concentration levels are assumed to be dynamic and deterministic. The order in

which the nodes are added to the set ψ is the order in which the site should be

searched. Moreover, the cardinality of the set R is the number of areas where the

protective gear is no longer required for the safety of the personnel working in those

areas. Ultimately, the algorithm results in a time-adaptive policy that directs the

crew to the maximum number of areas where it is critical to search while reaching

as many as possible within the allotted time.

The next subsection considers the final and most realistic case in which the

vapor concentration levels are both dynamic and stochastic. This more complicated

case is approached in a manner similar to the one used in the previous case.

3.2.4 Dynamic and Stochastic Vapor Concentrations

Finally, the fourth case is most representative of the real world problem where

the vapor concentrations at each node are denoted by time-dependent random vari-

ables. The solution to this final problem will also be a time-adaptive policy.

If a chemical agent is released over an area, the hazardous secondary vapors

will continue to contaminate other areas and pose harm to the personnel working

in the those areas. This case partially captures the true nature of those secondary

vapors by not only incorporating time into the formulation, but also assuming a

time-variant probability distribution to determine the probability that the vapor

concentration at each area of interest is below the threshold level.
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Figure 3.7 illustrates a possible network representation for this case. The label

on each node, Vj(t) denotes the random vapor concentration level at node j at time

t and, as before, each arc weight represents the travel time from node i to node j.

2 1 

3 4 

V1(t) V2(t) 

V3(t) V4(t) 

t1,2 

t2,4 

t3,4 

t1,3 

t1,4 

t4,3 

t4,2 

t2,1 

t4,1 

t3,2 

t2,3 

t3,1 

Figure 3.7 Network representation of a 4-node site in the dy-
namic/stochastic case.

We assume each node has an associated probability distribution that governs

the behavior of the vapor concentration, over time, at that node. As time progresses,

the parameters of the distribution change. In this work, we assume the concentration

at each node is a random variable with an exponential distribution. Each node j

will have an associated rate parameter at time t, namely, µj(t). The cumulative

distribution function for Vj(t) is

πj(t) ≡ P (Vj(t) ≤ v) =











1 − exp(−µj(t) · v) v ≥ 0

0 v < 0

. (3.21)

Suppose the rate parameter for node 1 at t = 420 sec is µ1(420) = 144.30. The

probability that node 1 is less than the threshold v∗ = 0.0006mg/m3 at time 420

seconds is 0.0829. This probability is calculated by

π1(420) = 1 − exp(−144.30 · 0.0006) = 0.0829. (3.22)
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Continuing in this fashion, the probability πj(t) that each node is less than the

threshold can be determined for each time t. These probability values are used in

the algorithm presented in this section.

The algorithm we developed for this case has a structure similar to that of the

case assuming deterministic and dynamic vapor concentrations. It begins with an

initialization step at time t0 (the duration of time since the chemical agent release

and the completion of the first instrument reading), and with the search crew located

at node s (the starting point for the search). The crew obtains an instrument reading

for its starting node and each node it searches. If vj(t) is below the threshold, the

node receives a reward value at time rj(t) according to

rj(t) =











1, vj(t) < v∗

0, vj(t) ≥ v∗

. (3.23)

If rj = 1, the set of reduced nodes R is updated by

R = R∪ {j}, (3.24)

indicating the vapor concentration at node j has dropped below the threshold for

time t.

For each adjacent node, the cumulative distribution function (c.d.f.) of the

appropriate probability distribution is used to determine the probability that the

next node to be searched will have a vapor concentration level below the threshold

upon arrival. The crew then chooses the area with maximum probability of having

a reward. This will direct them to the area where they are most likely to obtain a

vapor concentration reading below the threshold at the next time step. Once the

crew arrives at the area, it must obtain an instrument reading to determine the actual

vapor concentration. In the algorithm, this is accomplished by drawing a value from

the probability distribution as the realization vj(t) of the random variable Vj(t). If
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the vapor concentration is below the threshold, the reward value for that node, at

time t, assumes a value of 1 and is added to the set R.

There is a single stopping criterion terminating the algorithm. Once the time

allotted for the search expires the search crew must cease searching the site and

end at its current location. Upon termination, the set R contains, in order, the

nodes searched where the vapor concentration was decreased. The set ψ contains

the nodes, in order, to be searched within the allotted time to maximize the reward.

For nodes that remain uncovered, the expected value of the vapor concentration

is used to determine the reward value. For uncovered nodes, the reward is

rj(t) =











1, E[Vj(t)] < v∗

0, E[Vj(t)] ≥ v∗

. (3.25)

Thus, the final reward is

r∗(τ ∗) =
∑

j∈N

rj(t), (3.26)

such that t < T is the time of the last instrument reading and τ ∗ is the time length

of the solution. This value, r∗(τ ∗) is the total number of nodes that, according to

actual instrument readings for j ∈ ψ and the rewards for j 6∈ ψ (determined from

the expected vapor concentrations), no longer require protective gear.

Upon completion of the algorithm, decision makers will know which areas of the

site are operating safely without protective gear, those that still require the gear for

safe operations, those which are expected to not require the gear, and those expected

to still require the gear. Below is the formal algorithm for solving the mathematical

program. Recall, the set N denotes the set of N nodes in the area to be searched

and Ni is the set of nodes adjacent to node i ∈ N . The set R is used to record nodes

in the path with a reward value of 1 and the set ψ is the ordered set of nodes in the

optimal path.
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Initialization:

N = {1, 2, ..., N};

Ni = {j : (i, j) ∈ A};

R = ∅;

ψ = ∅;

t ← t0;

i = 1;

Obtain current vapor level vi(t)

If vi(t) < v∗

ri(t) ← 1;

R ← R∪ {i};

ψ ← ψ ∪ {i};

Else

ri(t) ← 0;

ψ ← ψ ∪ {i};

End

Step 1

Calculate πj(t + ti,j) ≡ P{Vj(t + ti,j) < v∗} ∀j ∈ Ni

Step 2

Choose j such that πj(t) = maxj∈Ni
P{Vj(t + ti,j) < v∗}

Obtain instrument reading at this node.

If vj(t + ti,j) < v∗

rj(t) ← 1;
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R ← R∪ {j};

ψ ← ψ ∪ {j};

t ← t + ti,j;

Else

rj(t) ← 0;

ψ ← ψ ∪ {j};

t ← t + ti,j;

End

Step 3

If t ≥ T

STOP

Else

i ← j;

Return to Step 1

End

This algorithm differs from the previous algorithm due to the stochastic nature

of the vapor concentration levels. It cannot be known with certainty whether or not

an area has a vapor concentration below the threshold until it is searched by the

crew and an instrument measurement obtained. Thus, the algorithm chooses which

nodes to search based solely on the probability the vapor concentration level will be

below the threshold upon the crew’s arrival.

Since there exists a non-zero probability that a searched area will have a vapor

concentration above the threshold, the algorithm allows the crew to search that area

again by not removing it from the set of candidate nodes. The resulting policy can

include searching a node more than once since the probability distributions change
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over time, and the nodes are searched based on probabilities which may not be very

high.

The next chapter provides several numerical examples to illustrate each of

these four cases. We setup each case and employ the mathematical formulations and

algorithms developed in this chapter to find an optimal sampling procedure for the

site.
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4. Numerical Results

In this chapter, the main results of Chapter 3 will be illustrated through

four example problems. The algorithms developed in the previous chapter will be

used to identify a policy that directs the search crew through the site in order to

identify the maximum number of areas at which protective gear may be removed. We

will compare the results for the static/deterministic with the dynamic/deterministic

vapor concentration levels, as well as the results for the static/stochastic with the

dynamic/stochastic vapor concentration levels to discuss the impact of excluding the

dynamic nature of the secondary vapor concentrations when searching the site.

4.1 Generating Problem Instances

We randomly generate ten ordered pairs, {(xi, yi) : i = 1, 2, ..., 10}, to represent

a site with ten critical areas. Plotting these coordinates depicts the location of the

critical areas with respect to each other and the initial chemical agent release. From

this plot, a network graph is drawn using nodes to represent the critical areas and

arcs to represent feasible travel between pairs of areas.

We arbitrarily consider a rectangular area of the site 100 meters by 150 me-

ters. A standard spreadsheet application was used to randomly generate the ten x-

coordinates and ten y-coordinates recorded in Table 4.1. The points are distributed

uniformly over the intervals (5, 100) and (5, 150), respectively, and the pairs are given

in ascending order by the x value to assign node numbers to each area.

This example assumes all critical areas of the site lie to the northeast of the

chemical agent release. If the release occurred elsewhere, the origin may be translated

to the appropriate location without affecting the solution procedure. The areas are

plotted in Figure 4.1.
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Table 4.1 x, y-coordinates for example site.

Node x (m) y (m)

1 6.276 23.015
2 14.466 56.527
3 33.297 96.017
4 42.992 5.234
5 60.240 53.504
6 71.900 140.526
7 86.365 36.667
8 94.149 86.361
9 98.829 7.664
10 99.742 100.500

Creating a node for each point on the plot in Figure 4.1, and connecting pairs

of nodes with arcs, generates the network representation for this example. Also

assuming zero detours, the Euclidean distance from node i to node j, denoted di,j,

can be computed as

di,j =
√

(xi − xj)2 + (yi − yj)2. (4.1)

Assuming zero delays or obstacles, and a constant velocity of 26.8224 m/min (1

mi/h) we calculate the travel time for a search crew from one node to another. Five

minutes are added to the time on each arc (i, j) ∈ A to account for the instrument

reading at node j. Recall, the travel times are symmetric so that ti,j = tj,i for all

(i, j) ∈ A.

Figure 4.2 depicts the network graph for the notional site. The following sec-

tions use this site as a template for each example. The appropriate methodology is

applied in each section to obtain a path directing the search crew through the site

to identify the maximum number of areas at which the protective posture level can

be reduced.
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Figure 4.1 Plot of x, y-coordinates for the notional site.

4.2 Example 1: Static and Deterministic Vapor Concentrations

Recall for this case that vapor concentrations are time-invariant and can be cal-

culated using a deterministic formula such as the advection-diffusion Equation (3.1)

(see Chapter 3). We seek a policy ψ to identify the areas of the site where the vapor

concentration has decreased below the threshold since the initial chemical agent re-

lease. A decrease below the threshold value v∗ allows personnel in the area to carry

out the mission safely without the cumbersome protective gear. The search crew will

use this policy to search the site and obtain instrument readings for those areas.

We begin by calculating the vapor concentration level for each node at initial

time t0 (i.e., time since the chemical agent release). Parameters used in Equa-

tion (3.1) are tabulated in Table 4.3.

The calculated vapor concentration and reward value at each node is recorded

in Table 4.4. The reward value is calculated as follows for threshold v∗ = 0.0006 mg/m3:

rj =











1, vj < v∗,

0, vj ≥ v∗

. (4.2)
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Table 4.2 Distance and travel time between nodes.

Arc Length(m) Travel Time (min)

(1,2) 34.50 6.29
(1,4) 40.79 6.52
(1,5) 61.98 7.31
(2,3) 43.75 6.63
(2,5) 45.87 6.71
(3,4) 91.30 8.40
(3,5) 50.33 6.88
(3,6) 58.92 7.20
(4,7) 53.56 7.00
(4,10) 110.89 9.13
(5,7) 31.08 6.16
(5,8) 47.22 6.76
(6,8) 58.56 7.18
(6,9) 135.56 10.05
(7,10) 65.22 7.43
(8,9) 78.84 7.94
(8,10) 15.20 5.57

The travel times, in minutes, are calculated using the relationship

ti,j =
di,j

ν
+ 300, (4.3)

where ν denotes the constant velocity of the search crew (in m/sec) and five minutes

(300 sec) required for the instrument reading is added to the travel time. These

times are entered into the matrix T = [ti,j], where a dash (-) for ti,j signifies travel

is infeasible between nodes i and j. The times are symmetric and remain constant

throughout the duration of the search.
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Figure 4.2 Network representation for the 10-node network.
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− 6.29 − 6.52 7.31 − − − − −

6.29 − 6.63 − 6.71 − − − − −

− 6.63 − 8.40 6.88 7.20 − − − −

6.52 − 8.40 − − − 7.00 − − 9.13

7.31 6.71 6.88 − − − 6.76 6.16 − −

− − 7.20 − − − − 7.18 10.05 −

− − − 7.00 6.76 − − − − 7.43

− − − − 6.16 7.18 − − 7.94 5.57

− − − − − 10.05 − 7.94 − −

− − − 9.13 − − 7.43 5.57 − −





















































The optimal path for this example problem was obtained using code written in

the high-performance language MATLABr. The code implicitly enumerates every

feasible path that the search crew can complete in the allotted time of T = 90
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Table 4.3 Parameter values for static/deterministic example.

Parameter Description Value

t0 time since release 420 sec
q amount of chemical agent released 1000 kg
kx eddy diffusivity 12 m2/sec
ky eddy diffusivity 12 m2/sec
kz eddy diffusivity 0.2113 m2/sec
u wind velocity 0.25 m/sec
h height of release 50 m
v vapor concentration threshold 0.0006 mg/m3

Table 4.4 Vapor concentration and reward value for each node in the
static/deterministic example (v∗ = 6.0 × 10−4).

Node vj (x 10−3) rj

1 0.496 1
2 0.470 1
3 0.405 1
4 0.682 0
5 0.649 0
6 0.294 1
7 0.760 0
8 0.567 1
9 0.822 0
10 0.500 1

minutes to identify the policy ψ that maximizes

∑

i∈N

∑

j∈N

rjxi,j. (4.4)

The solution to this problem, where we arbitrarily chose node s = 5 as the starting

location is illustrated in Figure 4.3. This solution yields the integer reward of 6

which is the total number of areas whose vapor concentration is below the threshold

level of v∗ = 0.0006 mg/m3. The path

ψ = {5, 8, 10, 7, 4, 1, 2, 3, 6, 9}
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directs the search crew through the network and is able to reach each node exactly

once in a total time of 62.85 minutes. There is a positive reward of 1 received from

searching each of the nodes in the set

R = {1, 2, 3, 6, 8, 10}.

No other path exists that reaches all ten nodes in less time. More importantly,

the path ψ directs the crew through the site and reaches each of the critical areas

where the level of MOPP can be reduced. The bold nodes in Figure 4.3 represent

those areas of the site where protective gear is no longer required and the numbers

on the arcs represent their order in the search. We provide an illustration for the

static and stochastic case in the next section.
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Figure 4.3 Optimal sampling path when concentrations are static
and deterministic.
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4.3 Example 2: Static and Stochastic Vapor Concentrations

For the case of static and stochastic vapor concentrations, the vapor concentra-

tion level at each node cannot be determined via a deterministic formula. Instead, we

assume the concentration level is a time-invariant and continuous random variable.

We determine the expected value of the vapor concentration for each node at

time t0. Thus, time-invariant probability distributions and appropriate parameters

are assigned to each node j ∈ N . In this illustration, we use the continuous ex-

ponential distribution with rate parameter µ and cumulative distribution function

(c.d.f)

F (x) =











1 − exp(−µx) x ≥ 0,

0 x < 0

.

The rate parameter for node j, µj, is recorded in Table 4.5.

Table 4.5 Rate parameters chosen for the exponential distributions used for example 2.

Node µj

1 6666.67
2 1538.46
3 1322.75
4 1574.80
5 1754.39
6 10000.00
7 4347.83
8 2222.22
9 909.09
10 7692.31

The expected value of the random vapor concentration, E[Vj] for each node

j ∈ N is computed by

E[Vj] = 1/µj. (4.5)

These expected values are used to determine the reward value rj for each node. Both

of these values are recorded in Table 4.6.
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Table 4.6 Expected vapor concentrations and rewards for example 2 (v∗ = 6.0× 10−4).

Node E[Vj](×10−4) rj

1 1.50 1
2 6.50 0
3 7.56 0
4 6.35 0
5 5.70 1
6 1.00 1
7 2.30 1
8 4.50 1
9 11.00 0
10 1.30 1

Now that the expected value and expected reward for searching each node

has been calculated, the same MATLABr code used in section 4.2 is implemented

to find the optimal path and total reward for sampling the areas. Again, since the

algorithm seeks to find the path of shortest time throughout the site, the travel times

have not changed, and the same starting node s = 5 is chosen. The optimal path is

identical to the optimal path identified in the case of static and deterministic vapor

concentrations. Thus, the solution is again

ψ = {5, 8, 10, 7, 4, 1, 2, 3, 6, 9}

with a total search time of 62.85 minutes. The solution is illustrated in Figure 4.4

where the bold nodes indicate locations containing vapor concentration levels below

the threshold.

It is important to note the total reward has not changed from 6 but the six

areas are not identical. This is due to the stochastic behavior of the secondary vapor

concentrations at each node. Since the total reward in this case is based on expected

values of the vapor concentrations, searching the site may, in fact, yield an actual

reward value that differs from this reward. In this example, the areas in which a
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Figure 4.4 Optimal sampling path when vapor concentrations are
static and stochastic.

reward is expected are

R = {1, 5, 6, 7, 8, 10}.

The next section contains an illustration of the case with dynamic and deter-

ministic vapor concentrations. Unlike the two previous examples, the vapor con-

centrations evolve over time, forcing the search crew to re-assess their route in a

time-adaptive search.

4.4 Example 3: Dynamic and Deterministic Vapor Concentrations

Just as in the case of section 4.2, we assume vapor concentrations can be

calculated at initial time t0 using a deterministic formula. Using the same site and

travel times from the previous two examples, we again use the advection-diffusion

Equation (3.1) discussed in Chapter 3 to determine vapor concentrations for each

area of the site.
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Consider again the ten-node site depicted in Figure 4.2. Let the search crew

begin at a node chosen arbitrarily, say node 5 (i.e., the starting node s = 5). Using

Equation (3.1), the vapor concentration for the starting node v5(t0) is computed

using the initial time t0 = 7 min (i.e., time since the chemical agent release).

Using the algorithm outlined in Chapter 3, subsection 3.2.3, and the time

matrix T, the initialization step yields the results in Table 4.7

Table 4.7 Results of initialization step for dynamic/deterministic example.

Node t (sec) vj(t) rj(t)

5 420 0.00065 0

The set R remains empty and the set ψ = {5}. In step 2, the vapor concen-

tration at nodes adjacent to node 5 are examined using the current time t0 plus the

travel time ti,j from node 5 to those adjacent nodes j ∈ Ni (t = t0 + ti,j). Recall, the

time ti,j includes 5 minutes required for obtaining an instrument reading at node j.

An indicator value of rj(t0) = 1 is assigned to node j if vj(t) < v∗. The results of

iteration 1 are displayed in Table 4.8. The anticipated reward of proceeding to each

node adjacent to node 5 is 0 so the arc of shortest time is chosen (i.e., the arc from

5 to 8). The following updates are recorded:

t = 420 + 369.6 = 789.6;

R = ∅;

ψ = ψ ∪ {8} = {5, 8}.

Now the vapor concentration for each node adjacent to node 8 is calculated

for t = 789.6 + t8,j for all j ∈ N8. Though the adjacent set N8 consists of the

nodes {5, 6, 9, 10}, only nodes 6, 9, and 10 are considered since node 5 was previously

sampled. That is, the crew cannot return to the node from which it has just departed.
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Table 4.8 Results of iteration 1 for dynamic/deterministic example (v∗ = 6.0 × 10−4).

Node t (sec) vj(t) rj

1 858.6 0.0036 0
2 822.6 0.0035 0
3 832.8 0.0036 0
7 825.6 0.0064 0
8 789.6 0.0054 0

Table 4.9 Results of iteration 2 for dynamic/deterministic example (v∗ = 6.0 × 10−4).

Node t (sec) vj(t) rj(t)

6 1220.4 0.0048 0
9 1266.0 0.0080 0
10 1123.8 0.0070 0

After iteration 2, node 10 is chosen as the next node for the crew to search

because the reward for all nodes adjacent to node 8 is 0 and the least time path

is from 8 to 10. The nodes N10 = {4, 7, 8} are examined next. However, node 8

is momentarily excluded from consideration since it has just been searched. The

algorithm continues for 12 iterations and terminates when the allotted time of 90

minutes (5400 seconds) is reached. The results of each iteration are recorded in

Table 4.10 where the node in bold is the next node to be searched.
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Table 4.10 Iterations 3-12 for dynamic/deterministic example (v∗ = 6.0 × 10−4).

Node t (sec) vj(t) rj(t)

Iteration 3
4 1671.6 0.0035 0
7 1569.6 0.0056 0

Iteration 4
4 1989.6 0.0024 0
5 1975.2 0.0028 0

Iteration 5
1 2413.8 0.00092 0
2 2377.8 0.0010 0
3 2388.0 0.0012 0
8 2344.8 0.0022 0

Iteration 6
6 2775.6 0.00091 0
9 2821.2 0.0013 0
10 2679.0 0.0014 0

Iteration 7
4 3226.8 0.00041 1
7 3124.8 0.00072 0

Iteration 8
1 3618 0.00016 1
3 3720.8 0.00017 1
7 3646.8 0.00033 1

Iteration 9
5 4052.4 0.00014 1
10 4092.6 0.00019 1

Iteration 10
4 4640.4 0.000050 1
8 4426.8 0.00011 1

Iteration 11
5 4796.4 0.000047 1
6 4857.6 0.000044 1
9 4903.2 0.000059 1

Iteration 12
6 5506.2 0.000017 1
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The algorithm terminates after 12 iterations, yielding the path

ψ = {5, 8, 10, 7, 5, 8, 10, 4, 7, 10, 8, 9}

and reduced set

R = {4, 7, 8, 9, 10}.

Area 6 would be the next area to search; however, the time required to travel to 6 and

take the measurement exceeds the allotted time by 1.77 minutes so the algorithm

terminates at node 9. The total reward for this example is 5, where areas not

requiring protective gear are the nodes j ∈ R. The total time required to complete

the search (including obtaining instrument readings) is 81.72 minutes. Figure 4.5

graphically displays the search policy with bold nodes denoting those areas not

requiring protective gear. The numbers along each arc indicate the order in which

the arcs are added to the solution (i.e., the order of the sampling).
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Figure 4.5 Optimal sampling path when vapor concentrations are dy-
namic and deterministic.
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It is important to note the state of the system at the terminating time. Using

Equation (3.1), the vapor concentration and reward value at each node is calculated

for t = 81.72 min and these values are tabulated in Table 4.11. According to this

information, all 10 areas of the site can safely operate without the protective gear.

However, the search crew cannot reach all of those areas after the time when the

vapor concentration decreases below the threshold and terminate the search within

the allotted time of 90 minutes.

Table 4.11 Vapor concentration and reward for each node at algorithm’s termination
(v∗ = 6.0 × 10−4).

Node vj(81.72) rj(t)

1 0.000023 1
2 0.000025 1
3 0.000030 1
4 0.000034 1
5 0.000040 1
6 0.000042 1
7 0.000052 1
8 0.000054 1
9 0.000059 1
10 0.000057 1

In the following section, we provide an example for the case of dynamic and

stochastic vapor concentration levels. We employ the algorithm of Chapter 3, sub-

section 3.2.4 to identify a policy for directing a search crew through the site, by

searching those areas most likely to have a vapor concentration below the threshold

level.

4.5 Example 4: Dynamic and Stochastic Vapor Concentrations

Finally, we provide an illustration of the case of dynamic and stochastic va-

por concentrations. More representative of the real-world problem, we allow the
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secondary vapor concentrations to evolve over time according to a time-dependent

probability distribution.

Consider the notional ten-node site depicted in Figure 4.2. Again, the time to

travel from node i to node j remains fixed and the matrix of times T used for the

previous examples is used here. Continuous probability distributions and parameters

are assigned to each node j ∈ N . For this example, we use the same distributions

and initial parameters used in example 2 of section 4.3. Recall, we assume each node

is governed by the exponential distribution with their initial rate parameters listed

in Table 4.5.

In the case of dynamic and stochastic secondary vapor concentrations, the

probability distributions change over time. Thus, for illustrative purposes, we choose

the relationship

µj(t + ti,j) = (t + ti,j) × µ−1
j (t) × 0.01 (4.6)

to model the evolution of the distribution over time. Thus, at each iteration of the

algorithm, the parameters are updated according to the time at which the search

crew arrives at node j ∈ N .

The algorithm presented in subsection 3.2.4 of Chapter 3 is implemented to

find the path ψ for this case. As opposed to the algorithm employed in the previous

section, it is the probability that a future node has a vapor concentration below the

threshold that drives the solution identified at the termination of this algorithm.

We again choose s = 5 as the starting location at time t0 = 420 seconds. Using

the probability distribution and parameter for node 5, a realization v5(420) of the

random variable V5(420) is obtained by drawing a number from the appropriate

exponential population (i.e., V5(420) ∼ Exp(µ5(420))).

Table 4.12 displays the results of the initialization step. At time t0 = 420 sec,

there is a 0.65 probability that the vapor concentration at node 5 is less than the

threshold v∗ = 0.0006 mg/m3. The realization of the vapor concentration at node
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5 at time 420 sec is 0.0011 mg/m3. The realization value represents the instrument

reading that will be taken at that time t in area 5 during the implementation of the

path.

Table 4.12 Initialization step for dynamic/stochastic example.

Node t (sec) µj(t) P (Vj(t) < v∗)

5 420.0 1754.39 0.65

A reward value of 0 is assigned to node 5 for the current time and all nodes

adjacent to node 5 are considered in the next step. The probability that the va-

por concentration is below the fixed threshold for all nodes adjacent to node 5 is

calculated. Based on these probabilities, recorded in Table 4.13, the next node is

determined.

Table 4.13 Results of step 1 for dynamic/stochastic example.

Node t (sec) µj(t) P (Vj(t) < v∗)

1 858.6 775.19 0.372
2 822.6 186.92 0.106
3 832.8 158.73 0.091
7 825.6 526.32 0.271
8 789.6 281.69 0.155

The node chosen to be searched from node 5 is node 1 since it has the highest

probability of having a vapor concentration below the threshold. Continuing in this

fashion the algorithm terminates after twelve iterations. The resulting path is

ψ = {5, 1, 5, 7, 10, 8, 6, 3, 5, 1, 4, 10}

and this search is completed in 88.61 minutes.

Drawing random numbers from the family of exponential distributions for each

node at each time, we determine the vapor concentration vj(t) for all j ∈ ψ at the

time they are searched. The values are recorded in Table 4.14.
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Table 4.14 Vapor concentrations for nodes in ψ for dynamic/stochastic example (v∗ =
6.0 × 10−4).

Node t (sec) vj(t) rj(t)

5 420 0.0011 0
1 858.6 0.000012 1
5 1297.2 0.000106 1
7 1702.8 0.000172 1
10 2148.6 0.000103 1
8 2482.8 0.000113 1
6 2913.6 0.000172 1
3 3345.6 0.000179 1
5 3758.4 0.000609 0
1 4197.0 0.000693 0
4 4588.2 0.000803 0
10 5136.0 0.000001 1

Note, due to the dynamic and stochastic behavior of the secondary vapor con-

centrations, nodes that initially have concentrations below the threshold may become

contaminated at later times. The total reward of this policy at the termination of

the allotted search time is 5. Though the sum of the reward values in Table 4.14

is 8, one of those nodes (node 10) is repeated and two (nodes 1 and 5) have vapor

concentrations that increase above the threshold v∗ when searched again. Hence,

the reduced set at the termination is

R = {3, 6, 7, 8, 10}.

Thus, these 5 areas are the areas most likely to operate safely without protective

gear.

Figure 4.6 is the graphical representation of the path ψ, where the bold nodes

represent areas where protective gear is not required. The numbers along each arc

indicate the order in which the arc is added to the solution.
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Figure 4.6 Optimal sampling path when vapor concentrations are dy-
namic and stochastic.

4.6 Comparison of Static and Dynamic Deterministic Solutions

The examples of sections 4.2 and 4.4 provide the basis for analyzing the im-

pact of ignoring (or incorporating) time into the mathematical models developed in

Chapter 3. We show there is a difference between the case where vapor concentration

levels remain static and when they evolve over time.

Table 4.15 displays the solution to example 1 (static and deterministic) and

example 3 (dynamic and deterministic). The optimal path for example 1

ψ = {5, 8, 10, 7, 4, 1, 2, 3, 6, 9}

directs the search crew through all ten nodes, reaching each one exactly once, in

τ ∗ = 62.85 minutes. The total reward, found from deterministically calculating the

vapor concentration for each node j ∈ N , is 6. They should find that nodes in the
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reduced set

R = {1, 2, 3, 6, 8, 10}

have vapor concentrations below the fixed threshold.

The optimal path of example 3,

ψ = {5, 8, 10, 7, 5, 8, 10, 4, 7, 10, 8, 9}

requires τ ∗ = 81.72 minutes to complete, and never reaches nodes 1, 2, 3, or 6.

The neglect of these nodes is due to the dynamic nature of the secondary vapor

concentrations. In this case, the concentration of the node at the crew’s arrival time

drives the algorithm. For all nodes with a concentration below the threshold, the

algorithm always chooses the vapor concentration closest to the threshold. If none

of the nodes will have a concentration below the threshold, the algorithm chooses

the closest (in distance or time) node. This also allows nodes to be searched if the

vapor concentration decreases, even though it has been previously searched.

Note, in example 1 (static/deterministic vapor concentrations), 27.15 minutes

remain in the time allotted for the search. We know vapor concentrations evolve

over time, so those extra minutes are valuable in allowing the search crew to reach

more nodes at later times to record any change in concentration, either positive or

negative.

Figures 4.7 and 4.8 show the temporal evolution of the vapor concentrations

for each node throughout the duration of the search for example 3. The vapor

concentration from the static case in example 1 can also be seen on the plot. They

are the vapor concentrations at time 420 seconds. It is clear that time directly

impacts the vapor concentrations and thus, must be considered when developing a

search policy that will optimally route a crew.

In example 3, only fifty percent of the nodes were found to have a vapor

concentration less than the threshold, whereas in example 1, sixty percent of the
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Table 4.15 Comparison of solutions to the static/deterministic and dy-
namic/deterministic examples.

Static Dynamic

Node rj Node rj(τ)
5 0 5 0
8 1 8 0
10 1 10 0
7 0 7 0
4 0 5 0
1 1 8 0
2 1 10 0
3 1 4 1
6 1 7 1
9 0 10 1

8 1
9 1

Total Time (min) r∗ Total Time (min) r∗(τ ∗)
62.85 6 81.72 5

nodes no longer required protective gear. However, only two of those nodes have

vapor concentrations below the threshold in the example solutions. Thus, had the

effect of time been ignored, personnel in areas 1, 2, 3, and 6 may have been harmed

by not donning their protective equipment. The safe nodes of example 3 (nodes 4,

7, 8, 9, and 10) may be more accurate since they account for the evolution of the

vapor concentrations over time.

In the next section, we compare the results of examples 2 and 4. This allows us

to examine the impact of temporal evolution when we assume vapor concentrations

are stochastic rather than deterministic.

4.7 Comparison of Static and Dynamic Stochastic Solutions

The comparison of examples 2 and 4 provide an interesting analysis of the effect

of time of the secondary vapor concentrations when they are assumed to behave

according to continuous probability distributions. In example 2, the probability
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Figure 4.7 Evolution of vapor concentrations over time from example

3, nodes 1 through 5.

distributions are static and in example 4, they are time-variant. Recall, the result

of example 2 yields a path

ψ = {5, 8, 10, 7, 4, 1, 2, 3, 6, 9}

directing the search crew to all ten areas, reaching each one exactly once. In example

4, when time is incorporated into the methodology, the resulting path

ψ = {5, 1, 5, 7, 10, 8, 6, 3, 5, 1, 4, 10}

directs the search crew to just 8 of the 10 nodes. However, in example 4, the search

requires 88.61 minutes as opposed to the 62.85 required for example 2. The longer

search time in the dynamic case is a result of allowing previously searched nodes to

be searched again. Since the expected vapor concentrations are time-dependent there

exists a nonzero probability that the vapor concentration at a node may increase (or

decrease) over time. Thus, several of the nodes are searched more than once while

others are never searched at all.

In both examples, the vapor concentrations behave according to exponential

probability distributions. It is the probability that a vapor concentration is below
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Figure 4.8 Evolution of vapor concentrations over time from example
3, nodes 6 through 10.

the threshold that drives the node selection in the algorithm in example 4. Thus, it

directs the crew as follows:

ψ = {5, 1, 5, 7, 10, 8, 6, 3, 5, 1, 4, 10}.

The reward for case 4 stems from searching nodes in the reduced set

R = {3, 6, 7, 8, 10}.

Whereas the solution to example 2 is to search the nodes in the following order:

ψ = {5, 8, 10, 7, 4, 1, 2, 3, 6, 9}

with a reward for searching nodes

R = {1, 5, 6, 7, 10}.
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Table 4.16 Comparison of solutions to the static/stochastic and dynamic/stochastic
examples.

Static Dynamic

Node rj Node rj(τ)
5 1 5 0
8 1 1 0
10 1 5 0
7 1 7 1
4 0 10 1
1 1 8 1
2 0 6 1
3 0 3 1
6 1 5 0
9 0 1 0

4 0
10 1

Total Time (min) r∗ Total Time (min) r∗(τ ∗)
62.85 6 88.61 5

The case assuming stochastic and dynamic vapor concentrations suggests that

50 percent of the nodes no longer require protective gear. If the policy for example

2 had been followed, they would believe that 60 percent of the areas can operate

safely without protective gear; thus jeopardizing the personnel in those areas where

the progression of time may cause the vapor concentrations to contaminate those

areas that may have previously been deemed “safe.”

4.8 Summary of Results

The four numerical examples provided in this chapter demonstrate the impact

of increasing the complexity of the problem on the solution. In the first and most

simplistic case, we determine that the optimal path is one that samples every node

exactly once in the minimum amount of time. However, this case does not capture

the true behavior of secondary vapor concentrations that are known to evolve over

time and are subject to stochastic elements (e.g., wind, temperature, etc.). In the

4-24



real problem, it may be beneficial to re-examine an area if it is likely the vapor

concentration has changed. Thus, the state of the system in the first example may

not accurately represent the true state, resulting in a suboptimal solution of the

real problem. The second case assumes vapor concentrations are governed by time-

invariant probability distributions. The optimal path is identical to the path of the

previous example, but the total reward is different due to the stochastic nature.

The last two numerical illustrations demonstrate the impact time has on the

solution. In example 3, we assume the vapor concentrations can be computed by an

equation that depends on time. The crew does not search every node in the optimal

solution and searches some more than once. The solution procedure accounts for

the evolution of the vapor concentrations over time and chooses where to direct the

crew based on the calculated concentration at their time of arrival. Thus, the state

of the system in example 3 is more representative of reality than either example 1

or 2. Finally, example 4 attempts to capture the true nature of the problem. The

vapor concentration at each node evolves according to a time-dependent probability

distribution. As time progresses, the probability a node has a vapor concentration

below (or above) the threshold also evolves. Thus, in these illustrations, the resulting

path accounts for the effect time has on the chemical agent as well as the effect time

has on the probability distribution.

Consider the result of example 1, the case of static and deterministic vapor

concentrations. The optimal path is one that reaches each node exactly once. Com-

paring this result with that of the dynamic and deterministic example emphasizes

the impact of incorporating temporal evolution into the model. In example 3, the

optimal path directs the search crew to some nodes more than once and others not

at all. Due to the temporal evolution of vapor concentrations, some areas are more

critical than others and require being searched several times, and those that will not

change enough to warrant a search are excluded from the solution. Similar compar-

isons can be made with examples 2 and 4, the cases considering stochastic vapor
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concentrations. Observing the results of both dynamic cases and comparing them

with their static counterparts demonstrates that ignoring the temporal evolution

of the vapor concentrations could lead to suboptimal results that overestimate (or

underestimate) the number of areas operating safely without protective gear. For

example, if the optimal path of example 1 is followed, four areas would be operating

dangerously without protective gear because in example 3, those four areas are found

to be hazardous at later times. Also, three of the areas would be inhibited by the

cumbersome gear, when they could be operating safely without it. Likewise, the

stochastic cases can be compared with a similar outcome.

It is important to note the examples in this chapter provide numerical illustra-

tions based on several restrictive assumptions. A possible explanation for the results

observed in these illustrations is that we assumed independent vapor concentration

samples at each area over time. This may explain why we observed higher vapor

concentrations in some areas at a point in time when it was previously below the

threshold. In order to relax this assumption, we need a stochastic process in time and

space describing the vapor concentration evolution. In the next chapter we provide

a summary of this thesis, concluding remarks, and propose areas of future work.
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5. Conclusions and Future Research

The threat of terrorist attacks with biological or chemical weapons has become

a serious consideration for nations and their military forces. Modern research is un-

derway for identifying emergency response procedures for specific biological weapons

and for the incorporation of new sensor technologies and instruments for identifying

and quantifying chemical contamination. However, methods for effectively sampling

(in an optimal manner) chemical hazard areas subsequent to a chemical weapons

attack lag far behind. This thesis has provided a methodological framework for

incorporating real-time information for the purpose of optimally sampling a site

contaminated by an initial chemical attack and hazardous secondary chemical vapor

concentrations.

Three distinct cases of the problem were considered before the fourth (and

most realistic case) was examined. These cases were: static and deterministic vapor

concentration levels, static and stochastic vapor concentration levels, dynamic and

deterministic vapor concentration levels, and dynamic and stochastic vapor con-

centration levels. For each of the four cases, the objective function and relevant

constraints were defined and a solution methodology presented. The first two cases

ignored the temporal evolution of vapor concentrations and focused on identifying

the optimal path through a static system to maximize the reward (i.e., the number

of areas no longer requiring protective gear). The final two cases incorporated tem-

poral evolution of the chemical vapor concentrations to more accurately model the

real world problem. The results of this thesis represent a significant contribution to

the military operations research and bio-chemical defense communities by providing

a method that can be implemented quickly and efficiently in response to a chemical

attack on a military installation.

The methodology for each case was illustrated on four numerical example prob-

lems to identify the optimal path that results in the maximum reward within the
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allotted time for the search. The parameters were defined, and the algorithm de-

veloped for each specific case was implemented to obtain those results. Finally, the

result of the two static examples were compared with their respective dynamic coun-

terparts to highlight the impact of the temporal evolution of vapor concentrations

on the solution. It is clear that incorporating this evolution into the model resulted

in solutions that captured more of the real problem’s dynamics, thus maximizing the

number of areas in an attacked site that can operate safely without the cumbersome

protective gear. Ignoring the temporal evolution of the vapor concentrations may

result in removing the protective gear requirement in areas that may subsequently

become contaminated, thus exposing humans to an unnecessary hazard.

To realistically implement the techniques presented in this thesis, all of the

parameters relevant to the methodology must be known. This thesis covers a small

part of a much larger problem: estimating future downwind hazard areas when only

detector/sensor data (e.g., human input, M-8/M-9 paper, etc.) is known and using

those inputs to also estimate the source location and strength of the chemical agent

release. The last part of the problem is to estimate the area of contamination. We

assume this information is known a priori, allowing us to optimally direct a search

crew through the site to sample areas likely to have vapor concentrations below a

fixed threshold, indicating the area is safe.

Despite the fact that we assume the dynamics of the problem, the results of

this thesis provide insight into data requirements for optimally sampling a chemical

hazard area. For example, a model for estimating the spatiotemporal evolution of

secondary vapor concentrations is critical to providing information regarding the

concentration’s probability distribution for each area. Employing a realistic model

provides a means to identify areas likely (or unlikely) to be contaminated. These

distributions may subsequently be applied to the stochastic cases of sections 3.2.2

and 3.2.4. Once the information is obtained, one can identify the areas that can

safely operate without protective gear.
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Another restrictive assumption of this thesis is the use of static and determinis-

tic travel times between adjacent areas of the site. Traffic, obstacles, and other such

impediments are likely to delay the search crew or prohibit it from taking a path

altogether. Incorporating dynamic and stochastic travel times will result in solutions

with a least expected time path with a maximum reward. Relaxing this assump-

tion also leads to possible research in incorporating real-time information into the

methodology. For example, as routes open or close due to unforseen circumstances,

the solution path can be updated to accommodate these changes.

Relaxing the assumption of a single search crew would also result in different

methodology. If more than one crew were available, a higher number of areas may

be searched within the allotted time, resulting in more areas operating in the correct

level of protective gear. Having a number of crews equal to the number of areas

would be ideal because the problem would reduce to finding the shortest path from

each crew’s location to a specific area.

Finally, another area for future research involves incorporating real-time data

into the methodology to better model the behavior of the secondary vapor concen-

trations. This is due to the temporal and spatial evolution as well as stochastic

elements (e.g., wind direction and velocity, temperature, humidity, etc.) affecting

the behavior. Once future downwind hazard areas can be identified and the inputs

required for estimating parameters for those areas can be determined, they can be

incorporated into the techniques developed in this thesis providing an optimal path.

The main results of this thesis reach far beyond military applications only.

Hazardous vapor concentrations resulting from industrial accidents may contaminate

surrounding communities, threatening the lives of civilians within some radius of the

contamination. Having a procedure to optimally sample the affected area as quickly

as possible (to identify which residents should be evacuated) is invaluable to saving

lives. Also, should a chemical agent be released over a city or region, such a procedure
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may directly help emergency crews identify contaminated areas and evacuate them

in an efficient and timely manner.
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Appendix A. Static/Deterministic Code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computing STATIC vapor concentrations for (x,y) coordinates %

% %

% The purpose of this MATLAB code is to compute the static and %

% deterministic vapor concentrations for the network used in %

% this thesis. %

% %

% Author: Jennifer R. Plourde, AFIT/ENS GOR-05M %

% Date: 1 Feb 05 %

% Last revised: 1 Feb 05 %

% References: Kathirgamanathan, P., McKibbin, R. and %

% R.I. McLachlan (2003). Source release-rate estimation %

% of atmospheric pollution from a non-steady point source %

% - Part 1: Source ate a known location. Res. Lett. Inf. %

% Math. Sci. vol 5, 71-84. %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% VARIABLE DEFINITIONS %%%%%%%%%%%%%%%%%%%%%%%%%

% Inputs required: %

% nel: number of nodes %

% tm: (nel x nel)matrix of feasible travel times between nodes %

% X: (nel x 1) vector of x-coordinates %

% Y: (nel x 1) vector of y-coordinates %

% Z: (nel x 1) vector of z-coordinates (z = 0, for this thesis) %

% V: vapor threshold value %

% Q: total mass release (kg) %

% K_x, K_y, K_z: eddy diffusivities for x, y, z (m^2s^-1) %

% H: height above the ground where release occurs (m) %

% U: wind velocity (m/s) %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc;

clear;

format long;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Time matrix %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tm =[ inf 6.29 inf 6.52 7.31 inf inf inf inf inf

6.29 inf 6.63 inf 6.71 inf inf inf inf inf

inf 6.63 inf 8.4 6.88 7.2 inf inf inf inf

6.52 inf 8.4 inf inf inf 7 inf inf 9.13

7.31 6.71 6.88 inf inf inf 6.76 6.16 inf inf

inf inf 7.2 inf inf inf inf 7.18 10.05 inf

inf inf inf 7 6.76 inf inf inf inf 7.43

inf inf inf inf 6.16 7.18 inf inf 7.94 5.57

inf inf inf inf inf 10.05 inf 7.94 inf inf

inf inf inf 9.13 inf inf 7.43 5.57 inf inf];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% x, y coordinates %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X = [6.275673696

14.46607868

33.29676199

42.99188208

60.2395703

71.90038759

86.36478774

94.14929655

98.82869961

99.741966];

Y = [23.01492355

56.52684103

96.01718192

5.234534745

53.50444044

140.5256813

36.6666158

86.36143071

7.663960692

100.4998932];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Parameters for sample advection-diffusion equation used %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nel = 10;

Q = 1000;

K_x = 12;
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K_y = 12;

K_z = .2113;

Z=0;

H=50;

U=.25;

V = 0.0006;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t = 7*60; % time since release

for i = 1:nel

% Computes the vapor concentration (kg/m^3) for location (x_i,y_i)

v(i) = Q/(8*pi^(3/2)*(K_x*K_y*K_z)^(1/2)*t^(3/2))

*exp(-(X(i)-U*t)^2/(4*K_x*t)-Y(i)^2/(4*K_y*t))*(2*exp(-(H)^2/(4*K_z*t)));

% Converts units to mg/m^3

v(i) = v(i)*1000;

end

for i = 1:nel

% If the vapor concentration at location i is below the threshold, a

% reward value of 1 is assigned, else a value of zero is assigned

if v(i) < V

r(i) = 1;

else

r(i) = 0;

end

end

v

r

A-3



Appendix B. Dynamic/Deterministic Code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computing Dynamic and Deterministic %

% vapor concentrations for (x,y) coordinates %

% %

% The purpose of this MATLAB code is to compute the dynamic and %

% deterministic vapor concentrations for the network used in %

% this thesis. %

% %

% Author: Jennifer R. Plourde, AFIT/ENS GOR-05M %

% Date: 1 Feb 05 %

% Last revised: 1 Feb 05 %

% References: Kathirgamanathan, P., McKibbin, R. and %

% R.I. McLachlan (2003). Source release-rate estimation %

% of atmospheric pollution from a non-steady point source %

% - Part 1: Source ate a known location. Res. Lett. Inf. %

% Math. Sci. vol 5, 71-84. %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% VARIABLE DEFINITIONS %%%%%%%%%%%%%%%%%%%%%%%%%

% Inputs required: %

% nel: number of nodes %

% tm: (nel x nel) matrix of feasible arc times between nodes (min) %

% X: (nel x 1) vector of x-coordinates %

% Y: (nel x 1) vector of y-coordinates %

% Z: (nel x 1) vector of z-coordinates (z = 0, for this thesis) %

% vt: vapor threshold value %

% Q: total mass release (kg) %

% K_x, K_y, K_z: eddy diffusivities for x, y, z (m^2s^-1) %

% H: height above the ground where release occurs (m) %

% U: wind velocity (m/s) %

% T: time allotted for search %

% current: starting location %

% R: set of nodes in the path %

% reduced: set of nodes with reward of 1 %

% N: set of nodes 1:nel %

% Ni: set of node adjacent to node i %

% tf: future time (t + t_i,j) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc;
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clear;

format long;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% User Inputs %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nel = 10;

T = 90;

vt = 0.0006;

current = 5;

Q = 1000;

K_x = 12;

K_y = 12;

K_z = .2113;

Z=0;

H=50;

U=.25;

tm =[ inf 6.29 inf 6.52 7.31 inf inf inf inf inf

6.29 inf 6.63 inf 6.71 inf inf inf inf inf

inf 6.63 inf 8.4 6.88 7.2 inf inf inf inf

6.52 inf 8.4 inf inf inf 7 inf inf 9.13

7.31 6.71 6.88 inf inf inf 6.76 6.16 inf inf

inf inf 7.2 inf inf inf inf 7.18 10.05 inf

inf inf inf 7 6.76 inf inf inf inf 7.43

inf inf inf inf 6.16 7.18 inf inf 7.94 5.57

inf inf inf inf inf 10.05 inf 7.94 inf inf

inf inf inf 9.13 inf inf 7.43 5.57 inf inf];

X = [6.275673696

14.46607868

33.29676199

42.99188208

60.2395703

71.90038759

86.36478774

94.14929655

98.82869961

99.741966];

Y = [23.01492355

56.52684103
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96.01718192

5.234534745

53.50444044

140.5256813

36.6666158

86.36143071

7.663960692

100.4998932];

reduced = [];

R = [current];

for i = 1:nel

N(i) = 1;

end

% initial starting time

t = 7*60; % in seconds

%Initialization step

for i = current

v(i) = Q/(8*pi^(3/2)*(K_x*K_y*K_z)^(1/2)*t^(3/2))

*exp(-(X(i)-U*t)^2/(4*K_x*t)-Y(i)^2/(4*K_y*t))*(2*exp(-(H)^2/(4*K_z*t)));

v(i) = v(i)*1000; %converts to mg

if v(i) < vt & v(i) > 0

r(i) = 1;

else

r(i) = 0;

end

end

% If initial v < V, current is subtracted from set of nodes to visit

% Otherwise, it is still eligible to be searched

N(i) = N(i) - 1;

%%%%%%%%End Initialization%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 1 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

b = 0;

while t < 90*60
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N;

for f = 1:nel

if tm(current, f) == inf

Ni(f) = 0;

else

Ni(f) = 1;

end

end

Ni;

t = t/60; %return time units to minutes because of tm

%Calculate vapor concentration for each node j

for j = 1:nel

tf = t + tm(current, j);

tf = tf*60; %converts to seconds

v(j) = Q/(8*pi^(3/2)*(K_x*K_y*K_z)^(1/2)*tf^(3/2))

*exp(-(X(j)-U*tf)^2/(4*K_x*tf)-Y(j)^2/(4*K_y*tf))*(2*exp(-((H)^2)/(4*K_z*tf)));

v(j) = v(j)*1000; % converts to mg

end

for j = 1:nel

if v(j) < 0

v(j) = -v(j);

end

end

false = 0;

used = false;

% Allow return to previously visited node if there is no other option

if max(N + Ni) <= 1

ntmp = N;

N = N + Ni;

used = 1;

end

% If a node has been visited, set v < 0 so it won’t be considered

for j = 1:nel

if Ni(j) == 1

v(j) = v(j);

elseif Ni(j)

v(j) = -v(j);

end
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end

if b > 2

temp = R(b - 1);

if v(temp) > 0

v(temp) = -v(temp);

end

end

if used

N = ntmp;

end

v

% If v < V, set r = 1 (MOPP reduced) o.w. r = 0

for j = 1:nel

if v(j) < vt & v(j) >= 0

r(j) = 1;

else

r(j) = 0;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 2 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if r == 0

for j = 1:nel

if v(j) < 0

ty(j) = inf;

else

ty(j) = tm(current,j);

end

M = min(ty);

end

end

if sum(r) > 0

for j = 1:nel

if r(j) == 1

M(j) = v(j);
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else

M(j) = 0;

end

end

end

P = max(M);

k = 0;

% Record j as the next node

for j = 1:nel

if v(j) == P

next = j ;

elseif tm(current, j) == P

next = j;

end

end

for j = 1:nel

if next == j

if r(j) == 1

k = j;

end

end

end

if k ~= 0

reduced = [reduced, k];

end

% Remove j from further consideration

for j = 1:nel

if j == next

% r(j) = 1;

N(j) = N(j) - 1;

end

end

%update time step

t = t + tm(current, next) ; % minutes

t = t*60; %converts to seconds

if r(next) == 1

N(next) = -1;

end
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%Set next node as current and return to step 1

current = next;

if N == 0

for j =1:nel

if r(j) == 0

N(j) = 1;

else

N(j) = 0;

end

end

end

R = [R, next];

b = length(R);

if N < 0

break

end

ed = length(R);

edr = length(reduced);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 3 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if t > 90*60

over = length(R) - 1;

R(over);

time = t - tm(R(over),R(length(R)))*60;

R(ed) = R(ed) - R(ed);

reduced(edr) = reduced(edr) -reduced(edr);

for j = 1:nel

v(j) = Q/(8*pi^(3/2)*(K_x*K_y*K_z)^(1/2)*t^(3/2))

*exp(-(X(j)-U*t)^2/(4*K_x*t)-Y(j)^2/(4*K_y*t))*(2*exp(-((H)^2)/(4*K_z*t)));

v(j) = v(j)*1000; %mg

for j = 1:nel

if v(j) < vt

r(j) = 1;

else

r(j) = 0;

end

end
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end

end

end

path = R;

path

edr = edr -1;

disp([’The number of areas in reduced MOPP is ’ int2str(edr)])

disp([’These areas are ’ int2str(reduced)])

disp([’The total time of the search is ’ num2str(time/60) ’ minutes.’])
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Appendix C. Dynamic/Stochastic Code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computing Dynamic and Stochastic %

% vapor concentrations for (x,y) coordinates %

% %

% The purpose of this MATLAB code is to compute the dynamic and %

% stochastic vapor concentrations for the network used in %

% this thesis. %

% %

% Author: Jennifer R. Plourde, AFIT/ENS GOR-05M %

% Date: 1 Feb 05 %

% Last revised: 1 Feb 05 %

% References: Kathirgamanathan, P., McKibbin, R. and %

% R.I. McLachlan (2003). Source release-rate estimation %

% of atmospheric pollution from a non-steady point source %

% - Part 1: Source ate a known location. Res. Lett. Inf. %

% Math. Sci. vol 5, 71-84. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% VARIABLE DEFINITIONS %%%%%%%%%%%%%%%%%%%%%%%%%

% Inputs required: %

% nel: number of nodes %

% tm: (nel x nel) matrix of feasible arc times between nodes (min) %

% X: (nel x 1) vector of x-coordinates %

% Y: (nel x 1) vector of y-coordinates %

% Z: (nel x 1) vector of z-coordinates (z = 0, for this thesis) %

% vt: vapor threshold value %

% Q: total mass release (kg) %

% K_x, K_y, K_z: eddy diffusivities for x, y, z (m^2s^-1) %

% H: height above the ground where release occurs (m) %

% U: wind velocity (m/s) %

% T: time allotted for search %

% current: starting location %

% R: set of nodes in the path %

% reduced: set of nodes with reward of 1 %

% N: set of nodes 1:nel %

% Ni: set of node adjacent to node i %

% tf: future time (t + t_i,j) %

% mu: (1 x nel) vector of expected value of %

% vapor concentration for each node %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc;

clear;
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format long;

nel = 10;

T = 90;

vt = 0.0006;

current = 5;

Q = 1000;

K_x = 12;

K_y = 12;

K_z = .2113;

Z=0;

H=50;

U=.25;

mu = [ .00015 .00065 .000756 .000635 .00057 .0001 .00023 .00045 .0011 .00013];%EV’s

tm =[inf 6.29 inf 6.52 7.31 inf inf inf inf inf

6.29 inf 6.63 inf 6.71 inf inf inf inf inf

inf 6.63 inf 8.4 6.88 7.2 inf inf inf inf

6.52 inf 8.4 inf inf inf 7 inf inf 9.13

7.31 6.71 6.88 inf inf inf 6.76 6.16 inf inf

inf inf 7.2 inf inf inf inf 7.18 10.05 inf

inf inf inf 7 6.76 inf inf inf inf 7.43

inf inf inf inf 6.16 7.18 inf inf 7.94 5.57

inf inf inf inf inf 10.05 inf 7.94 inf inf

inf inf inf 9.13 inf inf 7.43 5.57 inf inf];

X = [6.275673696

14.46607868

33.29676199

42.99188208

60.2395703

71.90038759

86.36478774

94.14929655

98.82869961

99.741966];

Y = [23.01492355

56.52684103

96.01718192

5.234534745

53.50444044

140.5256813
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36.6666158

86.36143071

7.663960692

100.4998932];

reduced = [];

R = [current];

for i = 1:nel

N(i) = 1;

end

%Time since release

t = 7*60 ;%seconds

rand(’state’, 135);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialization %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i = current

V(i) = expcdf(vt, mu(i));

v(i) = exprnd(mu(i));

if v(i) < vt & v(i) > 0

r(i) = 1;

reduced = [reduced, i];

else

r(i) = 0;

end

end

N(i) = N(i) - 1;

%%%%%%%%End Initialization%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 1 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

b = 0;

while t < 90*60

for f = 1:nel

if tm(current, f) == inf

Ni(f) = 0;

else

Ni(f) = 1;
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end

end

t = t/60; %return time units to minutes because of tm

for j = 1:nel

tf = t + tm(current, j);

tf = tf*60;

if Ni(j) == 1;

mum(j) = mu(j)*.01*tf;

V(j) = expcdf(vt, mum(j));

else

V(j) = 0;

end

end

V

for j = 1:nel

if V(j) < 0

V(j) = -V(j);

end

end

false = 0;

used = false;

% Allow return to previously visited node if there is no other option

if max(N + Ni) <= 1

ntmp = N;

N = N + Ni;

used = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 2 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% If a node has been visited, set v < 0 so it won’t be considered

for j = 1:nel

if Ni(j) == 1

V(j) = V(j);

elseif Ni(j)

V(j) = -V(j);

end

end

if b > 2

temp = R(b - 1);

C-4



if V(temp) > 0

V(temp) = -V(temp);

end

end

if used

N = ntmp;

end

P = max(V);

mts = [];

for j = 1:nel

if Ni(j) == 1;

if V(j) == P

mt = tm(current,j);

if mt >0

mts = [mts, mt];

if tm(current, j) == min(mts)

next = j ;

end

end

end

end

end

for i = 1:nel

v(next) = exprnd(mu(next));

end

for j = next

if v(j) < vt & v(j) >= 0

r(j) = 1;

else

r(j) = 0;

end

end

if r(next) == 1

k = next;

reduced = [reduced, k];

C-5



end

t = t + tm(current, next) %minutes

t = t*60;

next

if r(next) == 1

N(next) = -1;

end

current = next;

if N == 0

for j =1:nel

if r(j) == 0

N(j) = 1;

else

N(j) = 0;

end

end

end

R = [R, next];

b = length(R) ;

v

if N < 0

break

end

ed = length(R);

edr = length(reduced);

if t > 90*60

R(length(R));

over = length(R) - 1;

time = t - tm(R(over),R(length(R)))*60;

R(ed) = R(ed) - R(ed);

reduced(edr) = reduced(edr) - reduced(edr);

end

end

path = R;

path

S = sum(r);

disp([’The number of areas in reduced MOPP is ’ int2str(S)])

disp([’These areas are ’ int2str(reduced)])

disp([’The total time of the search is ’ num2str(time/60) ’ minutes.’])
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Appendix D. Static Cases Enumeration Code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Enumeration of all feasible paths in static/deterministic and %

% static/stochastic case %

% %

% The purpose of this code is to find the optimal shortest %

% path of maximum reward for the static/deterministic and %

% static/stochastic case of this thesis. %

% %

% Author: Jennifer R. Plourde, AFIT/ENS GOR-05M %

% Date: 10 Feb 05 %

% Last revised: 11 Feb 05 %

% References: None %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% VARIABLE DEFINITIONS %%%%%%%%%%%%%%%%%%%%%%%%%

% Inputs required: %

% tm: (nel x nel) matrix of feasible arc times between nodes (min) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc;

clear;

t0 = clock;

tm = [inf 6.29 inf 6.52 7.31 inf inf inf inf inf

6.29 inf 6.63 inf 6.71 inf inf inf inf inf

inf 6.63 inf 8.4 6.88 7.2 inf inf inf inf

6.52 inf 8.4 inf inf inf 7 inf inf 9.13

7.31 6.71 6.88 inf inf inf 6.76 6.16 inf inf

inf inf 7.2 inf inf inf inf 7.18 10.05 inf

inf inf inf 7 6.76 inf inf inf inf 7.43

inf inf inf inf 6.16 7.18 inf inf 7.94 5.57

inf inf inf inf inf 10.05 inf 7.94 inf inf

inf inf inf 9.13 inf inf 7.43 5.57 inf inf];

[jpath,jtime] = jenndykstra(tm)

t1 = clock;

etime(t1,t0)
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%%%%%%%%%%%%%%%%%%%%%%% Main Code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Inputs required: %

% tm: (nel x nel) matrix of feasible arc times between nodes (min) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [jpath,jtime] = jenndykstra(tm)

%building vectors

leftv = ones(1,size(tm,1));

%start at node 5

currv = [zeros(1, 4), 1, zeros(1,5)];

%currv = [1,zeros(1,size(tm,1)-1)];

prevv = zeros(1,size(tm,1));

maxtime = 90;

numbervector = [];

for i = 1:size(tm,1)

numbervector = [numbervector,i];

end;

streamv = []; % current path

tims = 0; % accumulated time

%determine maximum size of path

maxsize = ceil(maxtime/min(min(tm)))+20;

%create tree and associated times

[masters,mastert] = steptree3(tm, leftv, currv, prevv, streamv, tims, maxtime,

numbervector, maxsize);

%choose shortest time from the list

shortest = min(mastert);

found = 0;

i = 1;

% put rewards here

%identify the path associated with the shortest time

while found < 1

if mastert(i,1) == shortest

jpath = masters(i,:);

jtime = mastert(i,:);

found = 1;

end;

i = i + 1;
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end;

i = 1;

while ((jpath(1,i) ~= 0) & (i < maxsize))

i = i + 1;

end;

jpath = jpath(1,1:i-1);

%% this is the subroutine that is called recursively

function [masterss, mastertt] = steptree3(timem, leftv, currv, prevv, streamv, tims, maxtime,

numbervector, maxsize)

masterss = [];

mastertt = [];

%update step

if leftv*currv’ == 1

leftv = leftv-currv;

end;

tempstreamv = streamv;

streamv = [streamv,currv*numbervector’]; % where we’re at

leftv = logical(leftv);

currv = logical(currv);

prevv = logical(prevv);

if sum(prevv) ~= 0

temptims = tims;

tims = tims + timem(prevv,currv);

end;

if ((sum(leftv) == 0) & ( tims <= maxtime))

% if ((sum(leftv) == 0) | ( tims >= maxtime))

masterss = [streamv,zeros(1,maxsize-size(streamv,2))];

mastertt = tims;

elseif ( tims > maxtime)

masterss = [tempstreamv,zeros(1,maxsize-size(tempstreamv,2))];

mastertt = temptims;

else

tempstring = timem(:,currv);
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run = 0;

for i = 1:size(timem,1)

if ((tempstring(i,1) <= maxtime) & (leftv(1,i) == 1))

run = 1;

nextstep = zeros(1,size(timem,1));

nextstep(1,i) = 1;

[temps, tempt] = steptree3(timem, leftv, nextstep, currv, streamv, tims, maxtime,

numbervector, maxsize);

if size(tempt,1) >=1

masterss = [masterss;temps];

mastertt = [mastertt;tempt];

end;

end;

end;

if run == 0 % called when stuck

for i = 1:size(timem,1)

if tempstring(i,1) <= maxtime

nextstep = zeros(1,size(timem,1));

nextstep(1,i) = 1;

[temps, tempt] = steptree3(timem, leftv, nextstep, currv, streamv, tims, maxtime,

numbervector, maxsize);

if size(tempt,1) >=1

masterss = [masterss;temps];

mastertt = [mastertt;tempt];

end;

end;

end;

end;

end;
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